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Abstract

Personalized education technologies capable of delivering
adaptive interventions could play an important role in ad-
dressing the needs of diverse young learners at a critical time
of school readiness. We present an innovative personalized
social robot learning companion system that utilizes chil-
dren’s verbal and nonverbal affective cues to modulate their
engagement and maximize their long-term learning gains.
We propose an affective reinforcement learning approach to
train a personalized policy for each student during an educa-
tional activity where a child and a robot tell stories to each
other. Using the personalized policy, the robot selects stories
that are optimized for each child’s engagement and linguistic
skill progression. We recruited 67 bilingual and English lan-
guage learners between the ages of 4–6 years old to partici-
pate in a between-subjects study to evaluate our system. Over
a three-month deployment in schools, a unique storytelling
policy was trained to deliver a personalized story curriculum
for each child in the Personalized group. We compared their
engagement and learning outcomes to a Non-personalized
group with a fixed curriculum robot, and a baseline group that
had no robot intervention. In the Personalization condition,
our results show that the affective policy successfully person-
alized to each child to boost their engagement and outcomes
with respect to learning and retaining more target words as
well as using more target syntax structures as compared to
children in the other groups.

Introduction
Early literacy and language skills are a significant precur-
sor to children’s later educational success (Páez, Tabors,
and López 2007; Hart and Risley 1995). Quality preschool
programs support the development of key pre-literacy skills
such as phonological awareness, alphabetic knowledge, and
core vocabulary. These foundations support the develop-
ment of literacy skills in later grades and can help prevent
academic failure (Hart and Risley 1995; Fish and Pinker-
man 2003; Páez, Tabors, and López 2007; Snow et al.
2007). Yet, only about 32.7% of eligible 4-year-olds attend
preschool (National Institute of Early Education Research
2018). It is noteworthy that in 2015, only 35% of 4th, 36%
of 8th and 38% of 12th grade students scored at reading pro-
ficiency levels on the National Assessment of Educational
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Progress (NAEP) (National Center for Educational Statis-
tics 2016). Many of these students do not have learning dis-
abilities but still struggle to comprehend complex text.

School systems are under great pressure to provide in-
struction in kindergarten that remedies areas of early liter-
acy and English language weakness before children enter
primary school. In early childhood, there is a close depen-
dency between oral language development and learning to
read (Snow 1991). Language skill development, in turn, re-
quires sufficient exposure to a rich variety of vocabulary in
context and spoken language with others (Asaridou et al.
2016). Simply hearing language through passive listening is
not enough. Young children need to actively use language
while being emotionally and physically engaged in com-
munication to maximize their learning gains (Romeo et al.
2018; Wells 2000).

Unfortunately, a “participation gap” has been identified to
exist between families coming from different socioeconomic
status (SES) backgrounds with respect to the amount of daily
parent-child interactions and active parental involvement
in their child’s language and early literacy development at
home (Romeo et al. 2018; Neuman and Celano 2012). As a
result, many preschool age children from low SES families
have significantly smaller vocabularies and less-developed
vocalizations than their high SES counterparts (Gilkerson et
al. 2017). These differences often become magnified over
time (Hart and Risley 1995).

In at-risk communities, it is very difficult for a kinder-
garten teacher to offer a curriculum that addresses the wide
diversity of cognitive and pre-literacy starting points at
which children enter school. When a child enters kinder-
garten, she is a unique distribution of the various cogni-
tive, visual, social and linguistic skills needed to be a suc-
cessful reader (Wolf and Gottwald 2016; Dehaene 2009).
Young children would clearly benefit from personalized
instruction and active language-based interaction that can
measure and adapt to the many intersecting domains of
skills and abilities that support the process of learning to
read. This reality motivates the development of AI technolo-
gies that can continuously assess and effectively personal-
ize to meet individual children’s diverse needs. Prior suc-
cess with middle and high school age students has shown
that intelligent tutoring systems (ITS) can automatically
assess and adapt to student skill levels to positively im-



pact student learning gains (Corbett and Anderson 1994;
Desmarais and Baker 2012; Yudelson, Koedinger, and Gor-
don 2013). However, to support long-term personalized in-
teraction with preschool-age children, a more engaging, age-
appropriate, and autonomous assessment and intervention
should be implemented (Woolf 2010).

Social-robot learning companions hold great promise for
augmenting the efforts of parents and teachers to promote
learning, academic knowledge and positive learning atti-
tudes (Belpaeme et al. 2018). Social robots can physically,
socially, and emotionally play and engage with children in
the real world with verbal and non-verbal speech acts that
resemble those between peers or adults. They can be de-
signed to interact with children in a collaborative, peer-
like way during playful educational activities (Michaelis
and Mutlu 2018; Park et al. 2017c; Baxter et al. 2017;
Park and Howard 2015). Social robots can offer a unique op-
portunity to personalize social interactions to promote areas
of language development important for early literacy skills,
learning to read, and academic success.

Though the development of personalized robot tutors has
gained increased attention (Leyzberg, Spaulding, and Scas-
sellati 2014; Baxter et al. 2017; Kory 2014), the develop-
ment and assessment of a fully autonomous, personalized
learning companion robot that improves engagement and
learning outcomes for young children over months remains
a challenge. In this paper, we present algorithmic methods
and tools, developed and evaluated in real world contexts, to
advance the development of social robots that can personal-
ize to children and sustain engagement over months to foster
early literacy and language skills of young English language
learners (ELLs). Children engage with social robots in an
emotive and relational way, and the affective cues that so-
cial robots can elicit from children provides an opportunity
to better assess their engagement states. Our affective rein-
forcement learning personalization policy takes full advan-
tage of these engagement cues. Our robot was able to collect
a unique corpus of verbal and non-verbal behaviors as chil-
dren engaged in a dialogic storytelling task with it. The robot
employed a personalization policy trained over months of in-
teraction withQ-learning, a model-free reinforcement learn-
ing approach. We compare children’s engagement and learn-
ing outcomes with a personalized learning companion robot
to a non-personalized version (following a fixed curriculum)
and a baseline group (with no robot). Our results show that
the learned policy effectively personalized to each child and
served to boost their engagement and language skills.

Interaction Design
Dialogic storytelling is one of the most important educa-
tional activities in kindergarten. Rather than simply reading
or telling stories to children, the educator actively involves
children in the story by asking questions, and actively lis-
tening and responding to children’s contributions. We devel-
oped a fully autonomous social robot that can engage chil-
dren between the ages for 4–6 years old in dialogic story-
telling activities. The robot records each session and is able
to automatically assess children’s nonverbal affect cues, as
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Figure 1: Study setup and phases. (a) The Tega robot and
child interact face-to-face with an accompanying digital

storybook on a tablet also facing the child. Electrodermal
activity (EDA) data is collected by E4 sensors worn on each

wrist. (b) A front-facing camera view is used track and
recognize children’s facial affect. (c) A bird’s-eye camera
view is used for 2D body-pose tracking. (d) Interaction

phases in our study protocol.

well as analyze their speech samples to assess their lexical
and syntax skills.

Social Robot Platform: The Tega robot is an expressive
social robot designed to appeal to and engage with young
children as a playful learning companion. The robot supports
long-term, real-world deployments in various educational
settings such as homes, schools, and therapeutic centers. We
designed the robot to interact with children as a peer given
the known social influence that children of similar ages can
have on each other’s language, behavior, and attitudes. Our
robot’s peer-like attributes include a child-like voice, emo-
tionally expressive body movements, animated facial ex-
pressions, and non-verbal cues such as backchanneling to
signal active listening while attending to the child (Park et
al. 2017b; 2017a; 2017c).

Interaction Phases: Our 12-week study protocol was
comprised of several phases. First, we administered pretests
to assess children’s vocabulary and oral syntax skills. This
data was also used to counterbalance children across the
three conditions. Children then interacted with the Tega
robot once per week over 6–8 sessions in a dialogic story-
telling activity (Figure 1). In the Opening phase, the child
wakes the robot up and the robot greets the child and en-
gages in brief social pleasantries, asking the child about
school life, favorite stories, etc. In the Robot Story phase, the
robot selects and presents a story from its library (comprised
of 81 children’s picture books) to the child. As the robot tells
the story and asks the child questions, the artwork of the
story is shown on the tablet. Only the illustrations are shown
to isolate the effect of the robot’s oral storytelling on the
child’s learning and to avoid any effects of textual prompts



in case the child can read. The types of questions the robot
asks are lexical, factual, inferential, and emotional in nature.
By asking these questions, the robot has the opportunity to
assess the child’s engagement as well as her comprehension
of the story content. After telling its story, the robot invites
the child to retell the story, using the story illustrations on the
tablet as a guide if desired (Child Story phase). Each story
sample from the child provides new observations to mea-
sure her lexical and syntactic skill growth. When the child
tells the robot that she is finished with storytelling, the robot
provides some brief comments, says farewell, and goes back
to sleep (Closing phase). Depending on the robot’s story
length, two short stories were exchanged in some sessions
instead of one longer story. Once all storytelling sessions
were completed, we administered a final post-assessment.

Data Collection: In addition to the recorded dialogues
and task state data, children’s nonverbal cues were recorded
throughout each session (Figure 1). Their facial affect fea-
tures were extracted from the front-view camera using
Affdex (McDuff et al. 2016). We used the arousal metric as
a state space feature in our reinforcement learning algorithm
for personalization. We also collected electrodermal activ-
ity (EDA) data from sensors worn on both children’s wrists,
starting at least 5 minutes before the Opening phase to allow
the sensor values to stabilize. EDA is reported to correlate
with user engagement state and has been tested on young
children for its efficacy (Hernandez et al. 2014). We also
post-analyzed the birdeye-view camera frames for children’s
body pose using OpenPose (Cao et al. 2017). We found that
both EDA and leaning-forward body pose data were strongly
correlated with engagement (see Results section).

Language Skill Assessments: In the pre/post-test ses-
sions, children’s vocabulary and syntactic skills were as-
sessed using a clinically evaluated vocabulary test, target
vocabulary test, and personal narrative collection protocols.
The Peabody Picture Vocabulary Test (PPVT) (Dunn and
Dunn 2007) was used as a measure of children’s vocabulary
level, and the same format (four picture-based vocabulary
identification assessment) was used for the target vocabu-
lary test. Children’s personal narratives were collected using
Westerveld and Gillon’s language sampling protocol (West-
erveld and Gillon 2002). The narrative samples were eval-
uated using the Index of Productive Syntax (IPSyn) (Scar-
borough 1990) that evaluates the grammatical complexity
of spontaneous language samples. We evaluated children’s
syntax complexity from collected narrative samples using
IPSyn’s noun phrase, verb phrase, and sentence structure
scales.

Story Corpus: A touchscreen tablet was used to show
storybook illustrations to the child without text (Park,
Coogle, and Howard 2014). The robot’s library of 81 sto-
rybooks were curated by early literacy experts (from Tufts
University’s Reading and Language Research Center) to
span across the spectrum of age appropriate lexical and syn-
tactic complexity. All titles are commercially available. Ev-
ery book in the corpus was analyzed for lexical and syntactic
complexity using our automatic assessment tools.

In even-numbered sessions, the robot presented a target
storybook to all participants. We replicated the target-word

protocol from Collins’ work on studying preschool English
language learner’s vocabulary acquisition from listening to
teacher’s storytelling, and we used the same 4 books refer-
enced in (Collins 2010). Between 5–8 target words were ei-
ther inserted at appropriate locations in the story or replaced
the original words in the books. Of the 25 target words, 6
were verbs, 12 were nouns, and 7 were adjectives. The tar-
get words were selected based on 1) applicability to the story
so that the target words made sense when replaced with the
original word, such as “put on”→ “donned” and “noise”→
“clamor”, 2) frequency of occurrence so that the word ap-
pears exactly twice in the story with accompanying visual il-
lustration, and 3) unfamiliarity of the word to our target-age
audience, determined by oral and written word lists (Chall
and Dale 1995; Carroll et al. 1971). We cross-checked to
confirm that the target words do not appear in the ‘First
1,000 English Words’ list (Browne and others 2013). Nei-
ther do they appear in any of the other storybooks in our
corpus. The target vocabulary pre-test administered to all
participants showed that children performed no better than
chance on these target words (error rate above 75% for mul-
tiple choice with four answer choices).

Affective Personalization Policy and
Robot Action Selection

We hypothesize that interaction samples collected through
repeated encounters with a given child is sufficient to train
a personalized robot-action policy that would improve en-
gagement and learning outcomes for that child. Interactions
between our robot each of the participants in the personal-
ized (P) group provided episodes of < s, a, r, s′ >. The tu-
ple represents that the user was in state s, the robot provided
action (i.e., story sentences) a, the robot received reward r
for its action, and the users state changed to state s′ i re-
sponse to robot’s action. These episodes are used to train
each user’s personalization policy, Q[s, a]. In this section
we present our Q-learning approach (Watkins and Dayan
1992)to learn an optimal policy without knowing the model
in advance.

For personalized storytelling, the goal is to predict the
syntax and lexical complexity levels of the storybook that
the robot should present to a given child in order to maxi-
mize the child’s future engagement and learning gains mea-
sured through the child’s facial affect expressions, question
answering, and story retell narratives. Because the reward
for each state-action pair is partly computed using the tran-
script of the child’s story retell, the Q[s, a] table is updated
at the end of each child’s retell.

State space (S). The state space consists of users’ task
behavior stask and affective arousal saffect. Task behav-
ior states represent users’ question answering behavior dur-
ing the robot’s story narration - {not answered, answered},
{with prompt, without prompt}, {length of utterance (LU)
≤ 2, LU > 2}. Since verbal prompts and the length of ut-
terance states only make sense when an answer is given, the
total number of stask is 1+2×2 = 5. Affective arousal states
represent users’ facial muscle activation that illustrates a
user’s expressiveness and arousal level. The raw value of this



metric, an output from Affdex (McDuff et al. 2016), ranges
between [0, 100]. This range is divided into four states,
{[0, saffectq1), [saffectq1 , saffectq2), [saffectq2 , saffectq3),
[saffectq3 , 100]}, where saffectqn is an n-th quartile of the
saffect range of an individual participant, measured during
the first session before the first training. We implemented
this adaptive metric because we discovered from prior expe-
rience that young children’s affective arousal range can vary
widely across individuals. In total, the state space consists
of |stask| × |saffect| = 5× 4 = 20 states.

Action space (A). The action space of the personaliza-
tion policy represents the robot’s storytelling content, i.e.,
the lexical and syntactic complexity of a given sentence in
a storybook. The telling of each sentence is considered one
action. The lexical complexity is determined by whether the
sentence has a lemmatized word not in the known word list
(κ), alex = {∈ κ, /∈ κ}. The known word list consists of
the first 1,000 English words (Browne and others 2013) plus
any words that appeared in a child’s narrative or story retell.
Thus, for each child we maintained their known word list.
The syntactic complexity, asyn = {low,med, high}, is de-
termined by whether the given sentence is comprised only of
syntactic structures that are at a lower level than the child’s,
asyn = low, or has at least one syntactic structure that is of a
similar level as the child’s, asyn = med, or has at least one
syntactic structure at a higher level, asyn = high. Hence,
the action space has |alex| × |asyn| = 2 × 3 = 6 actions in
total.

Reward (R). The reward function is a weighted sum of
engagement and learning, r = 0.5 · engagement + 0.5 ·
learning, −100 ≤ r ≤ 100. The intention behind this
function is to reward new lexical and syntax learning while
bounding it with engagement so that the algorithm doesn’t
always select a story with the highest level of linguistic com-
plexity. The engagement and learning rewards are computed
as follows:

engagement =

{
25 · (n− 5), question not answered

25 · n, question answered

}
,

(1)

learning =


−100, no matching phrase
0, phrase ∈ [{∈ κ, low}]

+50, phrase ∈ [{∈ κ, {med, high}}, {/∈ κ, low}]
+100, phrase ∈ [{/∈ κ, {med, high}}]

 .

(2)

where n = {1, 2, 3, 4} is the n-th saffect quartile, and the
lexical and syntactic complexity of a matching phrase is
computed the same way as the action space.

Storybook selection. Given the updated user’s lexical
(κ) and syntactic (IPSyn category probability) levels from
the child’s latest story retell, the action space in each sto-
rybook is recomputed. Employing an ε-greedy algorithm
and setting ε to decrease in each successive session, ε =
{0.7, 0.6, 0.5, 0.3, 0.2, 0.2, 0.2, 0.2}, we choose the story-
book that best balances exploration and exploitation. The
exploration value ξ of a storybook m, 0 < ξm ≤ 1, is com-
puted as follows:

ξµ =
∑
a∈A
|âm| ·

1

1 +
∑
s∈S visits(s, a)

, (3)

where |âm| = |am|∑
a∈A |am| is the occurrence frequency of ac-

tion a in storybook m, and visits(s, a) is the total number
of times a state-action pair (s, a) has been visited. The learn-
ing rate α at every iteration also decreases as each episode
(s, a) is re-visited, preserving a minimum rate of 0.125:

α = max

(
1

1 + visits(s, a)
, 0.125

)
. (4)

We did not employ any specific exploration-exploitation
strategy, but estimated the exploration probability of story-
books in the corpus at a given iteration. The mixed lexical
and syntactic elements in the storybooks provided a natu-
ral selection of exploration and exploitation opportunities. It
was indeed observed that as the sessions progressed, more
exploitation actions were selected.

Experimental Setup
Study Conditions. Based on the pre-assessment results,
children were divided into three counterbalanced groups
based on age, gender, school, lexical, and syntax scales. In
the Personalization (P) group, the robot trained a personal-
ized action policy for each child to select storybooks that
were predicted to deliver the best learning and engagement
outcomes for that particular child. The robot’s action policy
for children in the Non-personalization (NP) group followed
a fixed curriculum with storybooks sampled from our story
corpus with varying lexical/syntactic complexity. The Base-
line (B) group took pre- and post-tests, but did not interact
with the robot at all.

Experts at the Tufts Reading and Language Research Cen-
ter authored three different levels of the four target story-
books (in addition to the embedding the target words in
them as mentioned earlier). In even numbered sessions when
children heard the target stories, the personalization policy
guided the selection of the story level for children in the P
group. Children in the NP group heard level 1 of the given
target storybook in session 2, level 2 on week 4, level 2 on
week 6, and level 3 on week 8. Level 3 was the most difficult
in terms of lexical and syntactic complexity.

The only difference between the P and NP groups was the
selection of storybooks from the corpus based on the robot’s
action policy. Other relational factors that could make a ses-
sion feel more personal to a child, such referring to the child
by name, opening/closing conversations, or the robot’s ex-
pressiveness were kept consistent across conditions.

Participants. We recruited 73 English language learners
(ELL) and bilingual children between the ages of 4–6 years
from local public schools in the Greater Boston area1. Af-
terwards, six children who earned significantly higher vo-
cabulary and syntax scores in the pre-test compared to the

1The study protocol was approved by the Institutional Review
Board (IRB) and parental consent was collected for children who
participated in this study. The use of images of children that appear
in this paper was approved by each child’s parents or guardians.
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Figure 2: Children learned more vocabulary from
interacting with the personalized robot. Children who

interacted with the non-personalized robot learned more
words than children who did not interact with either robot.

rest of the children (p = 0.013) were excluded from the
study. In total, 67 children (55% female, age µ = 5.36 years,
σ = 0.62) from 12 classrooms across three schools partic-
ipated in the study. Later, two children from the NP group
withdrew from the study mid-way, due to their family mov-
ing out of the country. Over the course of a three-month de-
ployment, a unique storytelling policy was trained to deliver
a personalized story curriculum for each child in the Person-
alized group (N = 22). We compared their engagement and
learning outcomes to the Non-personalized group (N = 22,
fixed curriculum robot) and the Baseline group (N = 23, no
robot intervention).

Results
Children learned more words from a personalized robot
peer. Since participants were divided into counterbalanced
groups, there was no significant difference in the target vo-
cabulary pre-test scores across conditions (B: µ = .79,
σ = .09; NP: µ = .75, σ = .13; P: µ = .74, σ = .13).
However, in the post-test, we saw significant effect of the
robot’s policy (B: µ = .75, σ = .10; NP: µ = .61, σ = .13;
P: µ = .51, σ = .16). With paired t-test analysis, both NP
and P groups showed a significant interaction effect pre-to-
post (NP: t(19) = 10.02, p < .0001; P: t(21) = 10.40,
p < .0001). Both NP and P groups also showed a sig-
nificant interaction effect compared to the baseline group.
A Welch’s independent samples t-test yields (B vs. NP:
t(34.88) = 3.65, p < .001, Cohen’s d = 1.18; B vs. P:
t(35.77) = 5.65, p < .0001, Cohen’s d = 1.72). Most no-
tably, we found a significant effect for personalization. With
Welch’s t-test, (NP vs. P: t(39.29) = 2.27, p = .028, Co-
hen’s d = .69) (Figure 2).

The Storyteller policy effectively personalized to each
child. A root mean square (RMS) policy distance between
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Figure 3: The storyteller policy personalized to each child
in the Personalized group. The plot shows the average RMS
distance of policies in each session from the initial policy
Q0. The confusion matrix depicts the rate of the number of
matching maximum reward state-action pairs between two

policies summed after each session over all sessions.

two sessions l and m of user x is computed as,

dl,mx =

√∑
s∈S

∑
a∈A(Q

l
x[s, a]−Qmx [s, a])2

|S| × |A|
. (5)

An average distance between the original policy and policies
in each session over all participants shows that the distance
increases as the sessions progress, suggesting that the policy
evolved over time (Figure 3). The policy did not converge af-
terN = 8 sessions. This was expected as there are 120 state-
action pairs, and the interaction samples are still quite sparse
with each pair being visited less than four times on average.
Each policy was trained with approximately 423.32± 76.78
episodes per person, 59.21± 22.23 per session.

The essence of reinforcement learning is in the policy-
guided action selection. We analyzed how the maxi-
mum reward-yielding action in each state was similar be-
tween any two policies. The number of matching ac-
tions maxaQx[s, a] = maxaQy[s, a] for every state was
summed after every session, and then was divided by the
number of states and number of sessions. When there were
multiple actions with a maximum reward, it was counted as
a match if at least one action overlapped between policies.
The rate of the action-match, νx,y ∈ [0, 1], is formulated as,

νx,y =
1

|S| ·N

N∑
l=1

∑
s∈S

[
max
a

Qlx[s, a] = max
a

Qly[s, a]
]
.

(6)
The embedded confusion matrix in Figure 3 depicts νx,y

values for each policy pair. The mean and standard devia-
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Figure 4: Children learned more vocabulary from
interacting with the personalized robot. Children who

interacted with the non-personalized robot learned more
words than children who did not interact with either robot.

tion of νx,y is 0.21 ± 0.095, with maximum value of 0.65
and minimum value of 0.07. This analysis strongly suggests
that each policy’s action selection strategy evolved quite dif-
ferently, personalizing to each user over time.

Children’s verbal and nonverbal engagement cues are
significantly correlated. The state space of the personaliza-
tion policy consists of user’s behavioral engagement cues
(i.e., children’s verbal responses to the robot’s questions and
children’s facial affect while listening to a story). While the
verbal behavior might be regarded as a more direct measure
of engagement, we hypothesize that the facial affect cues
hold as much information as the verbal cues. We analyzed
the correlation between the two signals in the P and the NP
conditions.

For all participants in both NP and P groups, when chil-
dren attempted to answer the robot’s question we observed
significantly higher affective engagement as compared to
when children did not attempt to answer the robot’s ques-
tion (Kruskal-Wallis: χ2(2) = 12.62, p < .001). Chil-
dren’s affective engagement was measured while they lis-
tened to the part of the story that held the information rele-
vant to the robot’s question (i.e., sentences that just preceded
the question). A post-hoc test using Mann-Whitney tests
with Bonferroni correction also showed a significant differ-
ence between children’s attempt to answer and no-attempt
(p < .001, effect size r = .095).

As depicted in Figure 4, it was also observed that this
trend was mainly driven by the Personalized group. When
children in the P group attempted to answer a question, they
showed significantly higher affective engagement compared
to when they did not attempt to answer (χ2(2) = 15.32, p <
.0001). A post-hoc test also showed a significant difference
between attempt and no-attempt (p < .0001, r = .240).

Children’s nonverbal & physiological cues show
higher attention and engagement in Personalized condi-
tion. Children in the P group showed higher Electrodermal
activity (EDA) in all phases of the interaction compared to

* ** *
Opening Robot Story Child Retell Closing

Figure 5: Children in the Personalized condition
demonstrated significantly higher Electrodermal Activity

(EDA) during all phases of the interaction.

children in the NP group (Opening: p < .05, Robot Story:
p < .05, Child Retell: p < .05, Closing p < .05). See Fig-
ure 5.

We used OpenPose (Cao et al. 2017), an open-source tool
for 2D body-pose estimation, to analyze the dynamics of
children leaning either toward or away from the robot. Video
recordings of each session were programmatically divided
into the three interaction phases: Opening, Robot Story and
Child Retell.

Our primary measurement was the horizontal slope be-
tween the estimated location of the child’s neck joint and
right or left hip joints to detect when children either leaned
toward or leaned away. After this calculation, the slope mea-
surements were smoothed by a median filter of 30 frames
to help reduce noise. For each session, we normalized the
slope values into the range [0, 1] and binned the values into
quartiles. We calculated the percentage of frames belong-
ing to each quartile as an aggregate metric for understanding
children’s body pose over many sessions. We analyzed the
number of transitions across quartiles as a way to approxi-
mate short-term leaning behavior. Using the smoothed quar-
tile data, we counted any instance of moving across quartiles
as a Transition, instances of moving up two quartiles as a
LeanForward and instances of moving down two quartiles
as a LeanBack.

Analyzing counts of these short-term pose behaviors re-
veals significant differences between the P and NP groups
(Figure 6). The results show that children in the P condition
exhibited significantly more LeanForward, LeanBack, and
overall Transitions than children in the NP condition. How-
ever this effect is present only during the robot’s story and
child’s retell phases of the interaction (Robot Story: p < .05,
Child Retell: p < .05).
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Figure 6: Children in the Personalized condition
demonstrated significantly more LeanForward behavior

during the robot’s story and child’s retell phases.

Discussion and Conclusion
Our results suggest that all children acquired new vocabu-
lary after storytelling interactions with our robot. While both
Personalized and Non-personalized groups performed sig-
nificantly better than the Baseline group, children who inter-
acted with a robot that learned to personalize to them showed
significantly higher engagement and learning outcomes.

Our vocabulary learning results aligns with those reported
in (Collins 2010) where a group of ELL children were read
eight target stories by a person three times each, over a 3-
week period. Children were also given the similar format
quizzes before and after. Children in Collins’ experimen-
tal group were given rich explanations of the target words,
whereas in the control condition they received none. They
report that children on average scored 0.53 errors in the ex-
perimental group, an average of 0.68 errors in the control
group, and an average of 0.75 errors in a no-story baseline
group. Collins’ results are comparable to the results we ob-
served in our study with a robot. This suggests that a story-
telling interaction with a personalized and socially relatable
robot-peer could be very effective. It further motivates the
use of interactive, social, emotive, and relational AI tech-
nology to assist teachers and parents to improve children’s
education.

Our results also suggest that our reinforcement learning
(RL) approach to training a personalized interaction policy
was effective. We found that our approach yielded personal-
ized policies for each child. This is supported by the accu-
mulated differences between policies as well as differences
in the maximum-reward yielding actions in each state. We
further provide evidence that verbal and nonverbal engage-
ment cues (i.e., the affective arousal cue and children’s ques-
tion answering behavior) are highly correlated. This sup-
ports our decision to use these features in the design of the
state space in our RL approach. In order to speed up the con-
vergence of the policy, we may leverage the likely similarity
of neighboring states to account for the sparsity of the Q ta-
ble. We performed further analysis on the affective engage-
ment state transitions and found that an engagement level
rarely jumps from extreme to extreme, but rather gradually

transitions between states. Using this analysis and model-
ing a state-transition cost function, each interaction episode
should more efficiently train the personalization policy.

Lastly, we evaluated the potential of using other types of
nonverbal and physiological data (i.e., body pose and EDA
data) to infer children’s engagement. We found that children
in the Personalized group show higher EDA and more lean-
ing forward behavior while interacting with the robot, sig-
naling higher attention and engagement levels. These results
will assist in future development of personalized engage-
ment models.

Our next research goal is to install our robots in schools
and homes in areas with high concentration of low-SES fam-
ilies and study their long-term effect. The price of commer-
cialized social robots is dropping at a rapid pace, lowering
the adoption barrier of these new technologies.
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