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Abstract

Though substantial research has been dedicated to-
wards using technology to improve education, no cur-
rent methods are as effective as one-on-one tutoring. A
critical, though relatively understudied, aspect of effec-
tive tutoring is modulating the student’s affective state
throughout the tutoring session in order to maximize
long-term learning gains. We developed an integrated
experimental paradigm in which children play a second-
language learning game on a tablet, in collaboration
with a fully autonomous social robotic learning com-
panion. As part of the system, we measured children’s
valence and engagement via an automatic facial expres-
sion analysis system. These signals were combined into
a reward signal that fed into the robot’s affective rein-
forcement learning algorithm. Over several sessions, the
robot played the game and personalized its motivational
strategies (using verbal and non-verbal actions) to each
student. We evaluated this system with 34 children in
preschool classrooms for a duration of two months. We
saw that (1) children learned new words from the re-
peated tutoring sessions, (2) the affective policy person-
alized to students over the duration of the study, and
(3) students who interacted with a robot that person-
alized its affective feedback strategy showed a signifi-
cant increase in valence, as compared to students who
interacted with a non-personalizing robot. This inte-
grated system of tablet-based educational content, af-
fective sensing, affective policy learning, and an au-
tonomous social robot holds great promise for a more
comprehensive approach to personalized tutoring.

Introduction
Socially assistive robotics (SAR) is an emerging field which
strives to create socially interactive robots that aid people in
different areas of their lives, such as education and care for
the elderly Tapus, Maja, and Scassellatti (2007); Williams
(2012); Fasola and Mataric (2013). Educational assistive
robots are designed to support children’s learning and devel-
opment, e.g., in the classroom Movellan et al. (2009); Chang
et al. (2010) or in one-on-one tutoring sessions Saerbeck et
al. (2010); Kory, Jeong, and Breazeal; Fridin (2014). How-
ever, children may learn in different ways and at different
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paces. In order to teach children most effectively, one must
personalize the educational interaction to each child Van-
Lehn (2011). While many intelligent tutoring systems per-
sonalize the curriculum to each student (e.g., the order and
type of questions asked or the content presented), fewer have
addressed the equally critical aspect of personalizing the tu-
toring interaction to the affective state of the student. If a
student is discouraged by the material and disengages from
the tutoring system, personalization of the educational con-
tent may be ineffective - the student is not attending to it
all. Recent innovations in affective sensing technology, such
as McDuff, Kaliouby, and Picard (2012), have allowed re-
searchers to begin using students’ affective responses as in-
put to intelligent tutoring systems, such that the system can
respond to students’ affective states Woolf et al. (2009); Ar-
royo et al.; Vanlehn et al.. However, so far, these systems
generally incorporate simple rule-based extensions to deal
with students’ affective states, and are based on virtual tu-
tors, not physically embodied robots Nye, Graesser, and Hu
(2014). Additional prior work has shown that a physically
embodied tutor may be more effective than a virtual tutor
Leyzberg, Spaulding, and Scassellati (2014).

In this work, we present an integrated affective tutoring
system that uses an integrated child-tablet-robot setup Gor-
don and Breazeal; Jeong et al. (2014); Kory and Breazeal.
The supportive affective behavior of a robotic tutor is au-
tonomously learned and personalized to each student over
multiple interactive tutoring sessions. The system is com-
posed of four primary components:

1. a novel, fully autonomous social robot platform (called
Tega), which was specifically designed to be engaging for
children, is robust enough to work continuously for sev-
eral hours, and is portable in order to be deployed in the
field;

2. a novel, educational Android tablet app that allows for
general curriculum generation and seamless integration
with the social robot;

3. an Android smartphone that uses the commercial Affdex
SDK to automatically analyze facial expressions in real-
time McDuff, Kaliouby, and Picard (2012); and

4. a cognitive architecture that integrates and feeds affec-
tive information from Affdex and educational information
from the tablet into an affective reinforcement learning al-



gorithm, which determines the social robot’s verbal and
non-verbal behavior.

The integration of all these components was enabled by us-
ing the Robot Operating System (ROS) throughout the setup
Quigley et al..

We evaluated this system in a real world experimental
paradigm. Native English-speaking preschool children (ages
3-5) interacted with the system to learn second language
vocabulary (Spanish) in their own classroom over a two-
month period. We first show that the tutoring setup facil-
itates these children’s learning of new Spanish words. We
then analyze the performance of the affective reinforcement
learning algorithm to show that it personalized to specific
children - i.e., the algorithm adapted in different ways for
each child. An analysis of the effects of the robot’s behav-
ior on children’s detected valence and engagement shows
that only children’s positive valence is robustly and signif-
icantly changed immediately following a set of non-verbal
actions by the robot. Consequently, we compared the va-
lence of children who interacted with either a personalized
or a non-personalized robot tutor. We found that the change
in valence between the first and last sessions over the two-
month period was significantly different between the two
conditions. That is, in the non-personalized condition, posi-
tive valence decreased, while in the personalized condition,
positive valence increased. These results, obtained using an
integrated system that combines educational content, affec-
tive sensing, and an expressive social robot deployed in a
real-world, long-term interaction study, shows that affec-
tive personalization of social robotic tutors can positively
influence the students’ affect in constructive and meaningful
ways.

Related Work
Intelligent Tutoring Systems (ITSs) refer to a wide variety of
computer-based educational tools. Common features of an
ITS include the ability to change its behavior in response to
student input, provide help in the form of a hint or additional
instruction, and conduct some form of evaluation of the user.
VanLehn VanLehn (2011) distinguishes between two broad
classes of computer-based tutors. First, ‘Computer-Aided
Instruction’ (CAI) systems are characterized by a ‘digital
workbook’ style that provides hints or feedback on students’
answers. Second, ‘Intelligent Tutoring Systems’ are char-
acterized by interactivity, open-response answers, and feed-
back on students’ process towards a solution, rather than just
the solution itself.

ITSs are already in use outside of the lab, in schools or
daycare classrooms. But, as is the case in many of the ap-
plied sciences, the deployed systems typically lag behind
the cutting edge of research. Thus, while commercial tutor-
ing systems rarely consider students’ affective or emotional
states, the research community has begun to address these
problems. The subfield of “affect-aware tutors” Woolf et al.
(2009) seeks to design more effective ITSs that explicitly
sense, model, and reason about students’ affective states. In-
spired by psychological theories of emotion and learning,
affect-aware tutors seek to foster engagement and learning

from data-driven estimates of students’ affective states. For
example, the Wayang geometry tutor is a system that fea-
tures a virtual agent which helps students solve geometry
problems Arroyo et al.. In order to foster engagement, the
tutor uses an empathy-based affective behavior system: the
emotional actions of the tutor are intended to mirror the (es-
timated) emotional state of the user. For example, if a child
appears bored, the tutor might also display signs of boredom
before suggesting a new topic or problem to keep the student
engaged.

Recent efforts to develop affect-aware tutoring systems
have culminated in a number of major systems that have
been extensively studied, including the Wayang Tutor Ar-
royo et al. and Affective Meta-Tutor Vanlehn et al. projects)
which have been extensively studied. Yet much of the work
on affect and modeling in the ITS literature focuses on mod-
els to infer affect. Typically, once affective states are de-
tected or identified, they trigger simple behavioral rules - a
tutor might change its facial expression or offer a supportive
comment. However, these rules are hardcoded by the devel-
opers and remain fixed throughout the deployment.

On the other hand, the research and development of so-
cial robot tutors has recently been flourishing Movellan et al.
(2009); Leyzberg, Spaulding, and Scassellati (2014); Desh-
mukh et al.; Kanda et al. (2004). For example, RUBI-4 is
a humanoid robot with articulated arms, an expressive face,
and a tablet embedded in its midsection that played simple
vocabulary games with preschool children Movellan et al.
(2009). Personalization of robot tutors, even via simple algo-
rithms, has been shown to greatly increase tutoring effective-
ness compared to non-personalized robot tutors as well com-
pared to virtual robots Leyzberg, Spaulding, and Scassel-
lati (2014). While more sophisticated learning approaches
to personalized robot tutors have been studied Gordon and
Breazeal, understanding how to effectively personalize tutor
behavior to support positive student affective is still an open
problem.

Interaction Design
We created a complete interaction scenario for evaluating
our affective social robotic tutor. The educational goal was
learning new words in a second language, in this case, Span-
ish. We used a child-tablet-robot scenario, wherein the tablet
provided a shared context for the child-robot interaction.
The child and the robot worked together to help a Spanish-
speaking in-game virtual character (a 2D animated Toucan)
travel to Spain. The game had content revolving around a
trip to Spain: packing for the trip, visiting a zoo, having
a picnic with friends, and so forth. These different adven-
tures provided the opportunity both to learn new words and
to review previous content, consistent with best educational
practices of spaced repetition. While a game in which the
robot provides both the curricular content and affective sup-
port could be envisioned, here, the robot and Toucan were
created as separate characters. This allowed the robot to be
presented as a peer tutor and teammate, on the child’s level,
rather than as a teacher. In addition, since the curriculum
was reinforced, but not presented, by the robot, this bet-
ter mimics some tutoring scenarios, in which children work
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Figure 1: In our evaluation study, the child sat across the
table from the robot. The tablet was placed on the table be-
tween them. The smartphone collecting data via Affdex sat
beside the robot. The child wore headphones that were con-
nected to the tablet and to the robot.

with a tutor to learn new information that has been presented
by a third party. The Toucan, on the other hand, did not
communicate supportive/affective information, only curric-
ular/instructional cues. Both the robot and the toucan com-
municated via pre-recorded speech and animations in order
to convey a realistic and engaging personality, which cannot
be easily achieved with an artificial voice. Game scripts de-
termined the dynamics of the interaction between the tablet
game, the virtual Toucan, and the game-related responses of
the robot.

Platform Design
Tega is a new robot platform that is designed and developed
specifically to enable long-term interactions with children.
The complete integrated system was comprised of a Tega
robot, a novel Android tablet app that enabled seamless com-
munication between the game content and the robot, an An-
droid smartphone app using the commercial Affdex SDK for
automatic facial expression, and a portable Ubuntu worksta-
tion and router for the local communication. All components
of the system were either designed or adapted to work with
the Robot Operating System (ROS) that alleviated the syn-
chronization problem often associated with such complex
and integrated systems. All data was continuously logged
in the form of ROS messages in synchronized ROS-bag files
for later analysis.

Robotic Platform
The Tega robot platform is a part of a line of Android-based
robots Setapen (2012) that leverage smart phones to graph-
ically display the robot’s animated face as well as drive
computation, including behavioral control, sensor process-
ing, and motor control for its five degrees of freedom (DoF).

Tega’s expressive joints are combinatorial and consist
of five basic DoFs: head up/down, waist-tilt left/right,
waist-lean forward/back, full-body up/down, and full-body
left/right. The robot is designed for robust actuator move-
ments such that the robot can express consistent behaviors
over long periods of time. For example, the foundation of

its kinematic chain is based on a lead-screw design that en-
ables the robot to rapidly and reliably exercise its primary
squash-and-stretch joint.

For long-term continual use, the robot has an efficient
battery-powered system that can run for up to six hours be-
fore needing to be recharged. The robot’s electronic design
extends the smartphone’s abilities with on-board speakers
and an additional high-definition camera that has a wide field
of view of the scene and users. Aesthetically, the robot is the
size of a teddy bear (about 11 inches tall), brightly colored,
and with a furry exterior to appeal to young children Kory,
Jeong, and Breazeal.

ROS-Integrated Educational Tablet App
We designed an educational Android-based tablet game to
provide the second-language learning curriculum. This com-
ponent of the integrated system was written with the Unity
3D game engine (version 4.6.2), designed to be an exten-
sible game platform that could plug in to any child-robot
interaction requiring a tablet. For each interaction session,
experimenters could load custom images or sounds required
for the specific scenario, on demand and in real-time. The
game included a virtual character - a 2D animated toucan -
who was shown in the lower left hand corner of the screen
on the tablet. The toucan presented the Spanish words and
gave cues regarding the curriculum and instructions on how
to play the game, but did not communicate any supportive
or affective information.

Because the Unity app on the tablet could not natively
run a ROS node, the app was designed to send and receive
JSON messages over a WebSocket connection to the Ros-
bridge server, which provided a communication link to the
other ROS nodes in the system. These capabilities allowed
the game logic in the interaction between the robot, child,
and Toucan to be abstracted from the app running on the
tablet. Furthermore, the game logic and the game content
could be modified without having to re-compile or re-deploy
the app on the tablet. This allows the game to be easily re-
used in future studies.

Automatic Facial Expression Detection
In order to analyze children’s emotional expressions, we
used the Affdex mobile SDK. This is a commercial tool
marketed by Affectiva, Inc. to enable developers to develop
affect-aware mobile applications. Affdex uses real-time face
detection and analysis algorithms to extract estimates of
four physical facial expression features (Smile, BrowFur-
row, BrowRaise, and LipDepress) and two hidden affec-
tive features (Valence and Engagement), either from offline
video or from real-time video streams of people’s faces. For
each of these six metrics, the SDK produces a number in
the range of [0, 100], with the exception of Valence, which
ranges from [−100, 100].

Due to the nature of the current SDK, which runs only on
Android or iOS devices, a separate Android phone was in-
tegrated into the setup for running Affdex. However, as the
technology develops, the Affdex SDK could potentially be
integrated directly into the robot. The source code was mod-
ified to allow transmission of the Affdex outputs via ROS
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Figure 2: This diagram shows the robot’s behavior and af-
fective policy components, with a superimposed screenshot
from the tablet app. The Toucan on the left-bottom corner on
the tablet was a constant virtual character that provided the
curriculum, i.e., the Spanish words. The rest of the screen
was dynamically loaded for each game interaction that the
child and robot played.

over the local network. The raw data we used were the va-
lence and engagement values, which ranged from ŝval ∈
[−100, 100] and ŝeng ∈ [0, 100], respectively. The affective
data was received at 20 frames per second, but only when
a face was detected. Due to the sporadic nature of the raw
data, we applied a median smoothing window of 20 frames.

Robot’s Behavior and Affective Policy
The social robot companion’s behavior was dictated by two
distinct components, namely, the game logic and the affec-
tive policy, Fig. 2. During the games, the robot supplied
instructions (English game) and hints (Review and Span-
ish games). The robot also supplied general encouragement
when the child was correct, e.g. “Good job!” or “You’re
working hard!”, as well as hints when the child was wrong,
e.g. “I think it was that one.” Finally, the robot’s gaze fol-
lowed the required response. For example, the robot would
gaze at the tablet when the child was expected to interact
with it, or would gaze at the child while talking to her.

The affective policy augmented the robot’s behavior in
order to increase its affective role as a supporting com-
panion in this tutoring setup. The policy was active when-
ever the child completed a specific required task or a task’s
maximal duration expired without the child’s interaction.
Thus, for example, when the child was correct, the robot
responded both with the game-related response (“You’re
working hard!”) and with the appropriate affective response
(described below).

The policy was formulated as a Q(s, a) matrix,
where s represent the affective- and game-states, whereas
a represent the affective responses. The state-space
consisted of four dimensions: (1) valence, supplied

by the Affdex software, smoothed and discretized to
three values sval = {Neg,Med, Pos} for ŝval =
{[−100,−33], (−33, 33], (33, 100]}, respectively; (2) en-
gagement, supplied by the Affdex software, smoothed and
binarized to two values seng = {Lo,Hi} for ŝeng =
{[0, 50), [50, 100]}, respectively; (3) on/off-task, a binary
value representing interaction with the tablet in the previ-
ous 5 seconds; e.g., if the child interacted with the tablet
in the previous 5 seconds prior to the requirement of the
an affective response, this state will be stask = 1; and (4)
right/wrong, a binary value representing the correctness of
the last requested response for the child during the game,
e.g., scor = 1 when the child was correct. In total, the state-
space consisted of 3× 2× 2× 2 = 24 states.

The action space of the affective policy represented
the robot’s affective state, also divided into engagement
and valence representations. Thus, the robots action-space
consisted of 3 × 2 + 1 = 7 actions, namely, a =
{{Neg,Med, Pos}×{Lo,Hi}, NoAction}, where the lat-
ter is an important addition, since sometimes not responding
to a student’s mental state may be the best supporting action.
These affective states were then translated to generic non-
verbal behaviors and game-specific verbal utterances. Below
is a non-exhaustive list of these affective-states paired with
example non-verbal (italics) and verbal responses for a scene
in which the child helps the Robot and Toucan pack for the
trip to Spain: a = {Pos,Hi} → Excited and “Woo hoo,
you’re trying so hard!”; a = {Med,Hi} → Thinking and
“The suitcase looks heavy.”; a = {Neg,Hi} → Frustrated
and “I can’t decide what to pack next!”; a = {Pos, Lo} →
Laugh and “This is so much fun!”; a = {Med,Lo} → “I
wish I could fly.”; a = {Neg, Lo} → Yawn and “I’m tired.”.

The initial policy represented a mirroring social robot
companion, i.e., reflecting the child’s own affective state,
with a bias towards negative valence when the child is ei-
ther wrong or off-task. However, due to the complex nature
of the affective dynamics between a child and a robot com-
panion, we implemented an affective reinforcement learning
algorithm so as to personalize this affective policy to each
child. In order to achieve this, we used a standard SARSA al-
gorithm Singh and Sutton (1996), where the reward was the
weighted sum of the valence and engagement r = 0.4(ŝval+
100)/2 + 0.6ŝeng , with the goal of maximizing engage-
ment and valence. We implemented an ε-greedy algorithm,
where ε was decreased with each successive session εi =
{0.75, 0.5, 0.25, 0.25, 0.25, 0.25, 0.25}, and the learning
rate also decreased αi = {0.5, 0.4, 0.3, 0.2, 0.1, 0.1, 0.1}.

Study Design
We performed a formal evaluation study using the setup de-
scribed above. We tested two conditions: personalized af-
fective response from the robot, in which the affective re-
inforcement learning algorithm was implemented, versus
non-personalized affective responses, in which the initial Q-
matrix was used throughout the sessions.

The study was performed inside three preschool class-
rooms, during normal activity hours of the classroom. Thus,
children participants were called to play with the social robot



companion and then returned to their class. This unique situ-
ation required specific adjustments to a standard robot-child
interaction scenario, such as using a divider in order to create
an “interaction space” in which the children were physically
separated from the rest of the classroom, and using head-
phones to minimize the chances of interference from non-
participants. Despite these restrictions, children were eager
to come and play with the robot repeatedly for a duration of
two months.

Participants
Thirty-four children ages 3-5 participated in the study (19
boys, 15 girls, age= 4(±0.7SD). They were recruited from
three preschool classrooms in a single school located in the
Greater Boston Area. The parents of all children signed in-
formed consent forms.

Out of these initial thirty-four subjects, only the 27 chil-
dren who completed at least 3 sessions with the robot were
included in the analysis. Out of these, 9 were English Lan-
guage Learners (ELL), i.e. their native language was not En-
glish, and while they interacted with the tablet and robot,
they did not follow the verbal directions of the robot or ex-
perimenter, and were thus excluded from the analysis. Of the
remaining 18 children, 9 (5 boys, 4 girls, age= 4(±0.7SD)
were in the personalized condition and 9 (5 boys, 4 girls,
age= 4(±0.5SD) were in the non-personalized condition.

Results
We first present the results of the words learned by the stu-
dents. We follow with the analysis of the affective person-
alization of the robot’s affective policy. We then show the
“instantaneous” effects of the robot’s non-verbal behaviors
on the child’s affective state and consequently show the re-
sults of long-term personalization on the change in affective
states of the children.

Preschool children learned new Spanish words
While many tutoring systems were developed for teaching
children new languages, our setup was unique in several
ways. First, the participants age-range was relatively low (3-
5). Second, it involved an interaction during the regular ac-
tivities of the class, as opposed to being set up in a special-
ized location and time. Third, it involved a fully autonomous
social robot companion, i.e. no intervention of the teacher
was required. Despite these challenging conditions and re-
quirements, Fig. 3 show that children learned at least some
of the words presented during the interaction. In order to test
learning, we conducted a digital pre- and post-assessment
test of the Spanish words introduced in each session. This
test was formatted like the Peabody Picture Vocabulary Test
(Dunn and Dunn, 2007): for each word tested, four pictures
were shown on the screen. The child was asked to touch
the picture corresponding to the word. The words most fre-
quently learned were those repeated most often during the
interaction, such as “blue,” “monkey,” and “clean.”

Affective policy personalized to students
While we implemented an affective reinforcement learn-
ing algorithm, there was no guarantee that the policies

*

Figure 3: Children were more likely to learn the Spanish
words that were used most frequently during the seven ses-
sions.

Figure 4: The affective policy dt changed greatly over the
seven sessions. Inset: distance matrix for all 9 subjects in
the personalization condition.

would change dramatically, or personalize to each child
(i.e., change in different ways for each child). In order
to analyze the personalization of the affective policy, we
first computed the RMS distance from the original policy:
dt =

√
(1/(12× 7))

∑
s,a(Qt(s, a)−Q0(s, a))2. Figure 4

shows this distance at the end of each session, averaged over
all subjects in the personalized condition. As can be seen, the
distance increases with time, with little variance, suggesting
that all subjects experienced new and adapting affective poli-
cies. However, it is evident that the policy did not converge
after seven sessions. This is not surprising due to the fact that
each session lasted only several minutes, while affective in-
teractions are extremely complex and dynamic, and a policy
governing them may take a long time to learn.

Did the policies change to a single underlying affective
policy, or did the affective social robot companion learn a
different policy for each child? The resultant policies for
each child at the end of the last session were extremely
different, as can be seen in a representative sample of the
Q(s, a) matrices. One important aspect of note is the lack of
change of the negative valence state. This surprising result
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Figure 5: There was significant change in children’s engage-
ment and valence as measured via Affdex following non-
verbal robot behaviors. ∗− p < 0.05, ∗ ∗−p < 0.01, ∗ ∗ ∗−
p < 0.001. Inset: From the first session to the last session,
positive valence increased in the personalized condition but
decreased for the non-personalized condition.

stemmed from the lack of consistent negative valence states
of the child, i.e., the robot never sensed children in a contin-
uous negative valence state, and thus could not adjust to it.
Figure 4(inset) shows that indeed the robot personalized to
each child, ending up with extremely variableQ(s, a) matri-
ces, as evident by the distance matrix between all subjects.

Children’s valence, but not engagement, changes in
response to non-verbal behaviors
The whole premise of the affective social robot companion
is that the robot’s behavior can affect children’s own af-
fective states. While the verbal component of the affective
policy was complex and variable, depending on the specific
game and session, the unique robot platform we developed
has the capacity for many non-verbal behaviors. In con-
trast with some commercially-available robot platforms that
are frequently used in child-robot interaction research (e.g.,
the Nao from Aldebaran Robotics), our social robot plat-
form has a highly expressive smart-phone based animated
face, as well as uniquely designed movements based on an-
imated expressions. Thus, the integrated setup implemented
in this study enabled us to directly quantify the effects of
non-verbal behaviors on children’s affective states. We time-
aligned the Affdex valence and engagement time-series val-
ues to the execution of specific non-verbal behaviors of the
robot. We then compared a 10 seconds window before and
after the execution of the behavior.

We found that engagement changed significantly only for
the Yawn behavior, which also instigated a change in va-
lence, Fig. 5. Engagement decreased whereas valence in-
creased for this specific long and expressive behavior. To
our surprise, for all other behaviors, engagement did not
significantly change. However, valence was significantly af-
fected by several expressive behaviors: (a) it increased after
Yes nodding behavior, an Interested lean-over, and a posi-
tive non-verbal utterance; (b) it dramatically decreased after
the very expressive Sad behavior. These results confirm the
premise that children’s affective states respond to the non-
verbal behavior of the social robot.

Affective personalization increases long-term
valence
Although we used a weighted sum of engagement and
valence as the reward, the results just discussed suggest
that only valence is affected by the robot’s non-verbal be-
haviors. Thus, we hypothesized that personalization would
affect valence but not engagement. To test this hypoth-
esis, we compared the change in valence from the first
to last session in the personalized and non-personalized
condition, Fig. 5:Inset. The results supported our hypoth-
esis: while valence was not significantly different in both
conditions in the first and last sessions, the change was
(∆sperval = 7(±6SEM),∆snonval = −18(±6SEM), p =
0.0251 Kruskal-Wallis).

Conclusions
We have presented an integrated system that addresses the
challenge of affective child-robot tutoring. The system de-
tects a child’s affective state and learns how to properly re-
spond over a long-term interaction between child and a fully
autonomous affective social robotic companion. In this sys-
tem, we combined: (i) a novel fully autonomous social robot
platform with an engaging and affective social interaction;
(ii) a novel interactive and generic tablet app that allows an
engaging co-play of robot and child; (iii) commercial au-
tomatic facial expression software and SDK that seamlessly
integrates with robot affect response; and (iv) an affective re-
inforcement learning algorithm for affective long-term per-
sonalization.

We deployed our setup in the natural environment of three
preschool classrooms during regular activity hours. These
unique settings combined with a fully autonomous social
robot companion necessitated constraining modifications to
our setup, e.g., headphones and physical dividers. Never-
theless, we showed that the tutoring setup was effective in
helping the children learn new Spanish words. Furthermore,
we found that our affective reinforcement learning algo-
rithm personalized to each child and resulted in a signif-
icantly increased long-term positive valence, compared to
non-personalized interactions. These results can only be ob-
tained in an integrated system, with an affective fully au-
tonomous social robot, an affective automatic sensing sys-
tem, and a long-term interaction in classrooms.

We believe that this paper presents critical steps towards
an effective and affective robot tutor for young children. Fu-
ture work will work towards a more compact setup. It will
include changes such as incorporation of the Affdex soft-
ware into the robot using the built-in camera in the Tega plat-
form, a longer-term interaction (e.g., six months to a year)
that will show either convergence of the affective policy or
dynamical adaptation to changes in children’s affective re-
sponses, and integration of speech recognition in order to
faciliate a more natural interaction between child and robot.
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