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Abstract

Learning from demonstration (LfD) is a widely-used tech-
nique for programming robot behavior. Despite its flexibility
and applicability to a wide range of tasks, LfD is most typi-
cally used to learn non-social behaviors. To our knowledge,
no prior work has learned robot behavior from demonstration
for interaction that is primarily social in nature.

In this paper, we conjecture that LfD can be used to develop
robot behavior capable of interacting socially with humans,
in scenarios such as a sharing the use of a playful and edu-
cational app. These demonstrations, we argue, should be pro-
vided within a Wizard-of-Oz paradigm. Thus, we refer to LfD
for social human-robot interaction as learning from the wiz-
ard (LfW). We describe the corresponding algorithmic and
experimental framework and explore challenges in designing
LfW systems. Finally, we describe two ongoing projects in-
volving LfD for human-robot interaction, along with a robotic
platform and cognitive architecture that are common between
the two projects.

Introduction
Learning from demonstration (LfD) is a common approach
for developing robot control. In LfD, demonstrations of cor-
rect or desired behavior are provided to a learning algorithm,
which attempts to derive a control policy that effectively em-
ulates the demonstrator. Demonstrations are often provided
by a live person, though they can also be provided by an
algorithm.

Thus far, robot learning from demonstration has been used
largely for tasks involving motor-based interaction with the
physical environment around the robot. In this paper, we ar-
gue for the novel application of learning from demonstration
to derive robotic behavior for social interaction. We also ar-
gue that the human interaction partner should be made to
think that the robot is acting autonomously when actually
controlled by a demonstrator, which makes the demonstra-
tions a form of Wizard-of-Oz control. We thus refer to the
use of LfD to learn social interaction more concisely as
learning from the wizard, or LfW. We distinguish this ap-
proach from previous work involving learning behavior for
human-robot interaction from demonstration by emphasiz-
ing our focus on learning intrinsically social behavior. We
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define intrinsically social behavior here to be actions that
primarily function as a means to convey information to an-
other party, not to accomplish some physical task. Prototyp-
ical examples include gaze cues, pointing gestures, verbal
expressions and facial expressions, among other things.

Because we are focusing on learning intrinsically social
behavior, the success of the interaction depends heavily on
effective expression of robotic social cues. Accordingly, the
robot’s space of possible actions will include social cues
such as communicative gaze, gestures, and verbal utter-
ances. We note that though the action space must have social
dimensions, the sensing space is not necessarily social. Any
sensory data that provides sufficient context for effective so-
cial action is acceptable. That said, socially-oriented sensory
data (e.g., sensing emotions of interactors) might be neces-
sary in practice to provide sufficient context for determining
behavior.

We conjecture that learning from demonstration is par-
ticularly well-suited for deriving behavioral policies for so-
cial interaction with a human. One alternative to LfW is to
program behavior directly, for instance via if-then rules, dy-
namic Bayesian networks, or finite state machines. Another
alternative is to specify an evaluation function (e.g. a re-
ward function or fitness function) and allow the robot to au-
tonomously improve its performance according to the evalu-
ation function. LfW appears to have several advantages over
these alternatives.

1. Behavior during demonstration will generally be high
quality, leaving only a potential period of tuning the learn-
ing algorithm as the source of low-quality interaction.
In contrast, autonomous learning algorithms typically re-
quire long periods of low-quality behavior. This is espe-
cially true in complex domains where an accurate model
of the effects of the robot’s actions is unavailable. Robotic
social interaction appears to be one such domain (though
learning such a model is plausible). Low-quality behavior
during social interaction is at best unhelpful and at worst
disastrous. A robot with nonsensical behavior will prob-
ably fail to engage its human interaction partner, ending
the potential for any future data for learning.

2. Demonstrations show what the teacher would do when
actually in the corresponding situation. Direct program-
ming, on the other hand, requires a person to imagine



what conditions should determine behavior and then des-
ignate what the robot should do in these various condi-
tions. The following passage from Martin is a common
sentiment within human subjects testing: “[surveys] can
tell you only how people say they behave or what they say
they think, not how they actually behave or what they ac-
tually think” (Martin 2008). Put differently, if you want to
know what someone would do in a situation, you should
put them in that situation and observe. Asking the person
is unreliable. The same insight should apply for specify-
ing robot behavior. A demonstrator can show what to do
in a situation, whereas a traditional programmer can only
imagine and tell. Autonomous learning presents different
challenges to the human attempting to specify behavior.
Specifying evaluation functions for multi-objective be-
havior is challenging, and social interaction is a partic-
ularly difficult multi-objective problem. For instance, a
robot acting as an educational tutor could have a learning-
related objective, but it also needs to balance its effects on
the pupil’s emotional state. Further, a long-term learning
objective creates a large delay between behavior and in-
formative outcomes, making autonomous learning even
more difficult. Instead, some mix of short-term objec-
tives would probably be required, including objectives re-
lated to the pupil’s engagement, emotional state, short-
term learning, behavior that supports long-term learning,
and so on. Demonstration does not require this challeng-
ing specification of an evaluation function by an expert in
autonomous learning algorithms.

3. Demonstrations permit behavior specification by experts
in the related domain (e.g., early childhood education),
without needing an expert in robot software development
or in autonomous learning algorithms to act as a mid-
dle man. Therefore, an LfW framework permits wider
deployment and more efficient behavior specification, as-
suming a predetermined learning algorithm that works ef-
fectively in a wide range of situations.

After describing related work in the following section,
this paper presents and discusses the general algorithmic and
experimental framework for learning from the wizard. In the
final section before the conclusion, we provide two exam-
ples of research projects in progress that fit this framework:
a social Turing test and a project to learn policies that enable
a robot to act as a learning companion for a young child. The
first project is intended to evaluate how well social behavior
in general can be emulated. The second project is intended
as a test of whether this paradigm can be applied to capture
potential pedagogical benefit with human-controlled robot
behavior, regardless of how indistinguishable the learned be-
havior is from the demonstrated behavior.

Background on LfD
Learning from demonstration is a highly active area of re-
search that is receiving growing attention from researchers.
Here, we give a brief introduction to the formalisms of LfD
and its common paradigms. We also discuss previous work
that is relevant to our approach to using LfD for social inter-
action.

When a task’s state is fully observable—i.e., adding more
information to the immediate observation signal would not
improve one’s ability to predict the action—the result of LfD
can be described as a behavioral policy, π : S ×A→ [0, 1],
that maps a state s and an action a to a probability of that
action being chosen from the state. To learn the policy, the
learning agent receives labeled data in the form of demon-
strations from a teacher—often a human, though not nec-
essarily. LfD is a special case of supervised learning. The
demonstrations of the teacher provide labeled training in-
stances, which can be used by different supervised learning
algorithms to create a policy. In this fully observable set-
ting, a demonstration di provided by the teacher takes the
form of a chronologically ordered sequence of state-action
pairs, di = {(s1i , a1i ), (s2i , a2i ), ...}. To illustrate, 10 games
of Tetris could be converted into 10 demonstrations, each
with a sequence of Tetris board states and controller inputs
at each of those states.

In many situations, however, the state is not fully observ-
able. To perform LfD for tasks with state that is not ob-
served, the learning target is a mapping function from the
space of possible observation histories and the space of ac-
tions to a probability. One method for doing so is to manu-
ally design features drawn from the observation history (in-
cluding past actions) and then to use those features as if they
are fully observable state, performing learning from demon-
stration on produced feature-action pairs.

In their survey of robot learning from demonstration, Ar-
gall et al. (Argall et al. 2009) describe three common cat-
egories of algorithms for deriving a policy from demon-
strations. Their three categories, generalized to fit learning
social interaction from demonstration, are as follows. Pol-
icy mapping learns a direct mapping from the robot’s ob-
servation history to action probabilities, using each demon-
strated action and its corresponding observation history as a
training sample for classification (for discrete actions) or re-
gression (for continuous actions). System model approaches
learn from demonstrations a transition function, a reward
function, or both. When a reward function is derived from
demonstrations, attempting to encapsulate the demonstra-
tor’s valuations of various behavior, the technique can be re-
ferred to as inverse reinforcement learning (Ng and Russell
2000; Abbeel and Ng 2004). Lastly, planning approaches
learn elements of potential plans: pre- and post-conditions
for actions. Under the planning framework, a policy con-
sists of an action sequence and the pre- and post- conditions
for undertaking each action. In many cases, state-action pair
demonstrations may not provide enough information to learn
a complete policy, thus demonstrations given in planning
models typically include annotations, additional domain in-
formation that guides policy learning.

Related work
We now give a review of previous work related to learning
social behaviors. Schrum et al. (2011) describe an online
software agent called UTˆ2 that used an evolutionary neu-
ral network to learn believable gameplay behaviors within a
first-person shooter. This work reports the development and



results of a software agent that learns to emulate human-
style gameplay to win the BotPrize, an artificial intelligence
competition in which judges attempt to identify humans and
agents by observing their gameplay behavior. Of particular
relevance to learning from the wizard was the UTˆ2 bot’s
use of human traces (recorded logs of human navigation be-
havior in the test environment) to reproduce certain patterns
of behavior. Quantitative analysis revealed that agents that
relied more heavily on human traces spent less time stuck
in non-navigable situations and qualitative reports indicated
that increased reliance on human traces led to judgements
of smoother and more human-like behavior.

Maya Cakmak and Andrea Thomaz have developed al-
gorithms that combined social behaviors into the LfD pro-
cess. However, the social behaviors exhibited by the robot
are mainly “social interfaces” for LfD. That is, the demon-
strations are facilitated and enhanced by social behaviors,
but the underlying behaviors learned by the algorithm were
still manipulation tasks. (Cakmak and Thomaz 2012)

In Nikolaidis and Shah’s cross-training frame-
work (2013), a human and a robot perform a task
together, switching roles in each iteration of training. From
the demonstrations derived from the human’s behavior in
these sessions, the robot creates models of human behavior
(directly in one role and via a reward function in another),
with which the robot plans its future behavior. In this work
the action space consists of task-oriented, manufacturing
actions, such as placing screws or drilling a hole. The
robot did not learn or exhibit intrinsically social behaviors,
though the timing and action selection of the model may
have faciliated social interaction as a byproduct. This work
demonstrates that LfD can effectively develop non-social
behavior for human-robot interaction.

Huang and Mutlu (2014) describe a method that uses dy-
namic Bayesian networks (DBNs) to learn a policy for social
behavior generation. Human teachers gave demonstrations
of a social narration task, which were labelled by hand to
identify social speech, gaze, and gesture behaviors. The tim-
ings and order of these social behaviors were used as demon-
strations to train the DBN. The learned DBN generated so-
cial behaviors for the robot, which in experiments increased
ratings of naturalness, likeability, and effectiveness of robot
social behavior in comparison to designer-specified behav-
iors and a DBN with the same structure but randomized
parameters. The learned behavior here was not interactive
and did not involve a Wizard of Oz setting, since the robot
learned to deliver a scripted lecture, but this work nonethe-
less shares many aspects with learning from the wizard and
provides evidence for its potential success.

To our knowledge, no previous work has used LfD to gen-
erate nonlinguistic, explicitly social actions during human-
robot interaction.

Algorithmic and experimental framework
In this section, we describe a general framework for learning
social interaction from demonstration (i.e., Learning from
the Wizard). We discuss both the algorithm and the experi-
ment together, providing a unified description of three basic
stages of conducting an experiment via LfW: Wizard-of-Oz

demonstrations, development and application of the learning
algorithm, and evaluation of the learned policy. Both the first
and third of these stages require human participants.

With LfD, as is common with more traditional forms
of supervised learning, the more closely the distribution of
training data resembles that of the testing data, the better
the learned policy will typically perform on test data. (For
LfW, the test data is the robot performance when deployed
autonomously.) Similarly, if the function that correctly maps
input to output in the training environment differs from the
one in the testing environment, it is particularly difficult to
learn models that perform well on test data.

With learning from demonstration, if the demonstrator’s
presence is known to the interacting human participant, this
awareness will undoubtedly affect the dynamics of the in-
teraction. The test domain for robots in our paradigm is au-
tonomous social interaction with a human. Thus having a
demonstrator present during training and absent during test-
ing might create a considerable difference in what robot be-
havior is most effective for interaction.

If so, participant awareness of the demonstrator would
likely introduce a mismatch between the training and test
environments and negatively impact the performance of the
learning algorithm. Therefore, a Wizard of Oz approach to
demonstrations is appropriate. Wizard of Oz (WoZ) refers to
a scenario in which a robot is secretly controlled by a hu-
man puppeteer as it interacts with a human participant. In
addition to creating WoZed demonstrations, we propose that
the demonstrator’s observations of the interaction should re-
flect the sensory input that the robot’s learning algorithm
and resultant behavioral policy will have available, subject
to the constraint of making this input understandable to the
demonstrator. This proposal follows a principle suggested
by Crick et al. (Crick et al. 2011), who compared learning
from demonstrations that were given by a person with either
a full video stream or the color-segmented video stream that
the robot used for localization. Human demonstrators with
the color-segmented stream gave demonstrations of lower
quality, but these demonstrations led to better learned per-
formance. Though only one study has examined this princi-
ple, we find it intuitively appealing and that it matches other
anecdotal accounts of LfD application.

Once sufficient demonstrations have been collected, a
learning algorithm is applied to create a mapping from the
space of possible observation histories and the space of pos-
sible actions to a probability. As mentioned in the Back-
ground section, many approaches to LfD break that mapping
into two steps: mapping from observation history to features
and mapping from features and an action to a probability.
The second mapping might be addressed by standard policy
mapping for LfD. The first mapping appears to be a partic-
ularly challenging problem in the context of learning social
interaction.

The true state space of a person in social interaction—
whether in person or controlling a robot—is unknown and
intractably complex, since it involves the full neurological
state that gives rise to their behavior. Social interaction in-
volves memory and inference about information never ob-



served (events, the other person’s mood, etc.). . However,
a mapping from the robot’s observation history to a rela-
tively simple state description might be sufficient to provide
enough context to emulate the demonstrator’s decisions with
sufficient fidelity to produce the desired interaction effects
(e.g., engagement, joy, and learning). The most common
approach for deriving such a state signal from an observa-
tion history is to hand-design features that are thought to
provide context for the demonstrator’s action. Algorithmic
approaches for deriving such state automatically may also
be possible (e.g. deep-learning approaches (Sutskever and
Hinton 2007)). .

When a satisfactory policy has been derived from demon-
stration data, the policy can be formally evaluated. We de-
scribe two categories of analysis, each of which is being ex-
plored by one of the two ongoing studies described in the
following section. Evaluation metrics could include human
participants’ ratings of the robot attributes such as likability
and naturalness; measurement of voluntary interaction time
or number of interactions; or measurements of effects on
the human interaction partner, including the person’s mood,
skill mastery, or subsequent behavior.

One type of evaluation directly compares the learned be-
havior to the demonstrations provided. Such a comparison
provides an idea of how well the demonstration behavior
was captured by LfD. The Social Turing Test study is an
example of this type of evaluation.

A second type of evaluation compares the learned behav-
ior to other types of interaction, which could include human-
human interaction, interaction with a robot whose behav-
ior was computationally derived from other techniques, and
many other possibilities. The robot reading companion study
employs this type of evaluation.

Above, we have assumed a batch approach to learning
from only demonstrations. Alternatives exist and may be
preferable. Many applications of LfD are iterative, allowing
cycles of demonstration, testing the learned behavior, and
further demonstration. Such an approach provides a simple
way to decide when the number of demonstrations are suf-
ficient for moving to the formal evaluation stage, and the
learning curve throughout these iterations could itself be a
form of evaluation. In iterative LfD, one common practice
is to provide demonstrations from failure states. Initiating
robot behavior from failure states is feasible in many tasks
involving physical manipulation, but this approach seems in-
feasible for social interaction with a human, whose state can-
not be specified by an experimenter. A potential substitute is
to have a demonstrator provide control commands that are
ignored during autonomous behavior, similar to pushing the
buttons on a video-game remote as if playing while another
person is actually in control. This method allows trajectories
from novel states reached by the learned policy, states that
might never be visited when the demonstrator is in control.
Ross and Bagnell provide a theoretical treatment of this ap-
proach (Ross, Gordon, and Bagnell 2011). In addition to in-
cremental alternatives to the three-stage description above,
the robot could also learn from more than demonstrations.
For instance, human-delivered feedback (Knox, Stone, and

Breazeal 2013) could be given during autonomous behav-
ior (Argall, Browning, and Veloso 2007).

Current projects involving LfD for social HRI
To examine how LfD might be extended to learning social
behaviors, we have developed a common platform to be used
in two ongoing research projects, each intended to explore a
different aspect of the learning process. However, we wish
to make it clear that the details of the implementations be-
low are only single instances of the general framework of
LfW described above. The action and sensing spaces, inter-
action contexts, and evaluations described may be useful as
guiding examples, but we believe that LfW as a paradigm is
applicable to a much wider range of scenarios that involve
learning social interaction behavior.

The first project attempts to learn a believable social be-
havior policy by engaging users in what we term a social
Turing test. Turing’s original test asked whether users could
reliably determine whether text-based linguistic behavior
was generated by a human or a computer during a short in-
teraction. This social Turing test instead asks whether users
can reliably determine whether an agent’s nonverbal behav-
ior is generated by a human or an autonomous agent during
an interaction. Initially, we expect that humans will be able
to easily deduce when the robot is being tele-operated. But
as the system receives a) more teleoperated demonstrations
and b) feedback on the autonomous policy (in the form of
correctly identifying the robot as autonomous), we expect
the robot’s ability to emulate the teleoperator to improve sig-
nificantly. The high-level research question in this project is
whether it is possible to use logged behavioral data from
teleoperated, human-controlled interactions to learn an au-
tonomous behavior policy that can pass this social Turing
test.

The second project attempts to learn pedagogically use-
ful behavior policies to affect a child’s language and liter-
acy learning. In this project, there will be a more focused,
structured interaction in which the robot and child will to-
gether explore a scene from a tablet-based picture e-book.
Following the LfW framework, the robot’s behavior will be
tele-operated at first, then the logged interaction data will
be used to learn an autonomous policy. The challenge here
is to produce not only believable behavior that maintains a
compelling interaction, but also behavior that can promote
beneficial educational outcomes.

Common robotic platform and cognitive
architecture
In preparation for these projects, we have developed a
robotic system composed of four major parts: the physi-
cal robot, a portable sensor suite, a teleoperator user inter-
face, and an integrated cognitive architecture that coordi-
nates sensing, learning, and shared control with a teleopera-
tor.

For the physical robot, we used the Dragonbot. The Drag-
onbot is a socially expressive platform with 5 physical de-
grees of freedom (DOFs) and a face animated by the screen
of an Android phone, capable of conveying many emotions



Figure 1: The Dragonbot, a socially expressive robot.

and expressions (Setapen 2012), as shown in Figure 1. We
also have assembled a portable sensor package consisting
of a Microsoft Kinect and a high-quality directional micro-
phone to capture facial expressions and prosodic informa-
tion from users. In order to facilitate demonstrations for the
robot to learn from, we also developed a real-time teleop-
erator user interface for the system. The interface, shown in
Figure 2 displays the robot’s behavior by drawing the robot’s
joint configurations, shows the robot’s sensory stream of au-
dio and video features, provides controls for triggering robot
actions, and allows the user to initiate and conclude “train-
ing sessions” for the robot. The robot can be controlled to
take on persistent expressions, to execute short, emotional
pre-scripted motor actions with paired audio, and to gaze at
the human’s face or other targets.

In order to realize a complete, integrated system capa-
ble of effectively making sense of large amounts of stream-
ing data and real-time human user input, we also developed
an integrated, cognitive architecture that receives streams
of multi-modal data, logs features and actions, and handles
seamless switching between teleoperation and autonomous
control. The cognitive architecture is subject to change as
these projects advance, but at the time of writing it operates
as follows. Demonstrations are collected while the robot is
controlled by a human wizard. At regular time intervals (cur-
rently 100 ms), the wizard’s chosen action is executed—if
an action has been chosen. To learn from these demonstra-
tions, the robot creates a training sample for policy mapping
from each step. This supervised-learning sample is derived
by computing features from the observation history at that
time step and considering the chosen action (or a no-action
action if none was chosen) to be the label. Sample features
include facial expression information and prosodic pitch and
intensity information from the portable sensor suite, recently
executed robot actions, and actions that the user has taken
within the app (within the educational project). For super-
vised learning, we are focusing on classification algorithms
that output a probability over classes. When the robot be-
haves autonomously, it computes these observation-based

Figure 2: The GUI for Wizard-of-Oz demonstrations. This ver-
sion, designed for the child-robot interaction in the robot learning
companion project, contains a visualization of the tablet and an op-
tion to direct the robot’s gaze at the tablet. The final version for
this experiment will also include a visualization of app activity and
buttons to trigger app-related robot actions.

features at each time step and samples an action from the
probability distribution that the learned model outputs from
these features. Our intuition is that non-deterministic behav-
ior will be more believable, as it will display more variabil-
ity, consistent with human-human interaction. A potential
disadvantage, though, is that rare and unintended actions
in demonstrations will likely occur. A deterministic policy
would less likely to display these types of actions than a
probabilistic one.

A nonverbal, embodied, and social Turing Test

The social Turing test has some additional detail beyond
what we have described above. First, human participants
will have an interface with two buttons that lets them com-
municate whether they think the robot is controlled au-
tonomously or by a human. Additionally, as mentioned be-
fore, human judgments of autonomous vs. human can be
used as feedback on the interaction. To use this feedback,
the learning algorithm above will need to be extended. In
our evaluation of participants’ judgment data, we expect to
see a learning curve as the number of interactions increases,
with the probability of an incorrect assessment increasing to
some plateau. Reaching a probability near 0.5 would be a
strong success, though lower plateaus could still provide ev-
idence that the demonstrations and feedback improved the
fidelity of the robot’s autonomous imitation of human con-
trol.



Figure 3: The coloring scene from the interactive, illustrated e-
book TinkRBook, which will be the focus of child-robot play dur-
ing the educational interaction project.

Sharing educational apps with children
In the robot learning companion study, participants will be
interacting with the robot in the context of mutual play with
an Android tablet app. The app we are using is part of
an educational, interactive, illustrated e-book called TinkR-
Book (Chang and Breazeal 2011) We will limit interaction
to a scene in the e-book that involves mixing colors in a duck
character’s bath (Figure 3). The child can mix primary col-
ors to make secondary colors and mix additional colors to
make brown. The duck can also be washed clean to white
to try other mixes. Additionally, the words are spoken when
touched, and noun words highlight the corresponding ob-
ject in the illustration. Likewise, touching the objects causes
their noun word to be highlighted and spoken. During the
interaction, the child’s actions upon this app will be used as
another source of context for robot behavior. Additionally,
the robot’s action set will be augmented to include gazing at
the app, highlighting objects in the app, and triggering object
touches in the app.

Child-robot-app interaction with the learned policy will
be compared against the child interacting with the app alone.
The primary evaluation metrics will be based on differences
between pre-test and post-test responses to questions regard-
ing the educational material in the e-book scene. In addition
to these two conditions, the experiment may also include a
child-adult-app interaction condition or even a child-adult-
robot-app condition.

Conclusion
In this paper, we have introduced a new model of LfD specif-
ically focused on learning socially interactive behaviors,
which we call learning from the wizard. In this scenario,
the demonstrations are provided by a human tele-operating
the robot in a Wizard-of-Oz paradigm. LfW provides several
benefits for learning to interact socially: WoZ control makes
it easier for the robot to avoid an early-learning period of
low-quality behavior, demonstrations capture teacher behav-
ior better than asking the teacher to describe behavior, and
non-roboticist humans can easily provide demonstrations to
the robot. This paper has presented a sketch of how to de-
sign an LfW system and perform experiments on it. Impor-

tant questions remain that can only be addressed by actu-
ally conducting these experiments, including what features
should be extracted from the observation history to provide
behavioral context and how to choose action spaces that are
rich enough for compelling interaction but simple enough to
avoid requiring more demonstrations than are possible.
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