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ABSTRACT

In education research, there is a widely-cited result called
“Bloom’s two sigma” that characterizes the differences in
learning outcomes between students who receive one-on-one
tutoring and those who receive traditional classroom instruc-
tion [1]. Tutored students scored in the 95th percentile, or
two sigmas above the mean, on average, compared to stu-
dents who received traditional classroom instruction. In
human-robot interaction research, however, there is rela-
tively little work exploring the potential benefits of personal-
izing a robot’s actions to an individual’s strengths and weak-
nesses. In this study, participants solved grid-based logic
puzzles with the help of a personalized or non-personalized
robot tutor. Participants’ puzzle solving times were com-
pared between two non-personalized control conditions and
two personalized conditions (n=80). Although the robot’s
personalizations were less sophisticated than what a human
tutor can do, we still witnessed a “one-sigma” improvement
(68th percentile) in post-tests between treatment and control
groups. We present these results as evidence that even rel-
atively simple personalizations can yield significant benefits
in educational or assistive human-robot interactions.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robotics; J.4 [Computer
Applications]: Social And Behavioral Sciences—Psychol-
ogy
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1. INTRODUCTION
There is a long-held belief in the HRI community that

personalized interactions are likely to be more compelling
or more useful than non-personalized interactions. Research
in this area has shown that people behave more socially to-
wards a robot that personalizes its interactions based on
interaction history [2]. However, relatively little is known
about personalization as a means to elicit behavioral change
in educational or assistive HRI. To what extent does per-
sonalization improve the utility of such robots? Is it diffi-
cult or expensive to build systems that tailor their output
to individuals’ strengths and weaknesses in this context?
Does the addition of personalization elicit desirable behav-
ioral changes among users?

To explore these questions we chose a domain in which
individual customizations are critical to the success of an
interaction. Effective tutoring requires teachers to assess
students’ individual differences and align their curricula and
methods to best suit an individual student’s needs. Bloom’s
“two sigma” result and many years of studies indicate that
individually tailored lessons are much more effective than
traditional classroom lessons [3]. These results confirm that
personalization is important in education, but comparing
a classroom learning environment to a one-on-one learning
environment leaves open the question of to what extent the
difference in learning outcomes can be attributed to person-
alization alone.

In this work, we compare four conditions, all of which
were one-on-one human-robot tutoring interactions. In two
conditions, we personalized the lessons participants received
based on an online assessment of the individual’s skills. The
content of each lesson was pre-recorded and identical in both
personalized conditions; the only difference was the order in
which the lessons were delivered. There are also two control
conditions in this study: one with no lessons whatsoever,
to establish a baseline of puzzle solving performance in our
population, and one with the same pre-recorded lessons as
in the two personalized conditions, but where the order is
chosen entirely independently of the user’s skills.

We find that, despite only changing the order of lessons,
participants that received personalized lessons performed
“one sigma” better than either control group in post-test
puzzle solving time. This result indicates that even rela-
tively simple personalizations can significantly improve the
utility of an educational or assistive human-robot interac-
tion.



(a) Sample nonogram puzzle, blank. (b) Sample nonogram puzzle, solved.

Figure 1: A sample nonogram puzzle. The objective of nonograms is, starting with a blank board (see left
figure), to find a pattern of shaded boxes on the board such that the number of consecutively shaded boxes
in each row and column appear as specified, in length and order, by the numbers that are printed to the left
of each row and above each column (see right figure). For a more detailed explanation see Section 3.2.2.

2. RELATED WORK
Bloom’s “two sigma” result inspired nearly three decades

of research investigating the differences in learning outcomes
between one-on-one tutoring and traditional classroom in-
struction. While there is no debate whether one-on-one tu-
toring benefits students, a recent review and meta-analysis
[3] noted that the average benefit of personalization was
closer to one sigma than to two sigma. Whether the benefits
are one sigma or two, there is little doubt that individualized
instruction has a substantial impact on students’ learning
gains.

In addition to human tutoring, another active area of re-
search is creating and evaluating computerized tutoring sys-
tems [4]. The average effect size across studies evaluating
learning gains made via computerized tutoring is that tu-
tored students performed 0.76 sigma better than students
who received only traditional classroom education, a close
second to the effect of human tutors [3]. These learning out-
come results, whether produced by human tutor or computer
tutor, underscore the importance of personalization in the
education domain. No previous work, however, has isolated
the effect of personalization on human-robot interactions in
an educational or assistive setting.

Previous work in personalization in HRI has been limited
to measures of engagement and user satisfaction. Snackbot,
a robot that personalized dialogue in reference to an indi-
vidual user’s history of snack choices, was found to be more
engaging on several measures than a non-personalized ver-
sion of the same robot, including an increased desire to use
the robot and an increase in social behavior directed toward
the robot [2]. Kidd’s robot weight loss coach generates cus-
tomized dialogue based on the progress of the user [5] but
his research does not isolate the effect of personalization. In
other work, users that were allowed to decorate, and thus
personalize, their Roombas self-reported higher engagement
with the robot and more willingness to use the robot in the
future [6]. No earlier work, however, isolated the effects of
personalization in HRI in an educational or assistive setting.

There has been other work on robot tutoring, however.
One such platform is RUBI, a robot tutor designed to in-
teract with 18 to 24 month old children [7]. RUBI is a
humanoid with articulated arms, an expressive face, and a
tablet embedded in its midsection on which it displays ed-
ucational content like vocabulary lessons. A study of the
iRobiQ, a humanoid similar in design to RUBI, provides
some experimentally-derived guidelines for using robot tu-
tors in classrooms [8]. Research has also been done on tutor-
ing robots that operate as museum guides [9] or teleoperated
instruments of a human teacher, such as the Huggable robot
[10]. A long-term study of elementary students playing chess
with an iCat explored how supportive students perceive dif-
ferent versions of the robot tutor to be [11]. No previous
robot tutor research, however, isolates the role of personal-
ization.

3. METHOD
To assess the effect of personalization in an educational

human-robot interaction, an experiment was conducted in
which a robot tutor assisted participants in solving grid-
based logic puzzles.

In previous work, the authors demonstrated that physically-
embodied robot tutors produce greater learning gains than
on-screen virtual agents delivering the same lessons1 [12].
The present work isolates the effects of personalization in
educational/assistive HRI by comparing robot tutors that
provide individualized lessons to those that do not.

3.1 Participants
There were 80 participants in this experiment, between

18 and 40 years of age. Most participants were undergradu-
ate and graduate students of Yale University, none of whom

1Our earlier work on embodiment [12] used a similar appara-
tus and some data here were previously presented as part of
that work. The current work introduces new data, new algo-
rithms for personalization, and an experimental design that
isolates the effect of personalization in educational/assistive
HRI.



(a) Participants solve a nonogram puzzle on the computer
as the robot (Keepon) analyzes the moves they make and,
three times per puzzle, delivers brief lessons (21− 47 sec.)
about gameplay strategies.

(b) A screenshot of the nonogram puzzle user interface dur-
ing gameplay. All boards start blank. Participants played
four puzzles for a maximum of fifteen minutes per puzzle.

(c) A screenshot of the tutoring user interface. The robot
‘speaks’ in pre-recorded spoken messages and and moves
in pre-recorded motions while coordinated visuals appear
on screen.

Figure 2: Experiment apparatus and user interface screenshots.

were pursuing a degree in computer science. This study is a
between-subjects design with four groups of 20 participants
each, receiving either: (1) no lessons, (2) randomized-but-
relevant lessons, (3) personalized lessons chosen by an addi-
tive skill assessment algorithm, or (4) personalized lessons
chosen by a Bayesian network skill assessment algorithm.
Exclusion criteria were a lack of English fluency or prior
academic experience with robotics or artificial intelligence.

3.2 Apparatus
Participants in the experiment were asked to solve a set

of logic puzzles on a computer. A robot tutor interrupted
several times throughout each participants’ session to de-
liver puzzle solving strategy lessons. In the two personalized
lessons conditions, the robot used one of two skill assessment
models (described in Section 4) to choose which among a
set of pre-recorded lessons to give the participant, whereas
in the randomized-but-relevant lessons condition the robot
picked a random pre-recorded lesson among those applica-
ble to the current state of the board but independent of the
skills of the user. In the no lessons condition participants
solved the puzzles with no help, the robot merely served as
an announcer for the game. We compare the puzzle solv-
ing performance between these four groups to evaluate the
effects of personalization in educational/assistive HRI.

3.2.1 Robot

The robot we used, Keepon, is a small yellow snowman-
shaped tabletop robot, 11 inches tall, see Figure 2(a). We
chose Keepon because it is particularly well suited to ex-
pressive non-threatening social communication [13, 14].

During the experiment, the robot played three roles. First,
it refereed and acted as a host: it welcomed participants
when they started, told them when they had finished or
when they had run out of time, and told them when the
experiment was over. Second, it “observed” the board dur-
ing gameplay: the robot’s body faced the screen and its
head followed the location of the mouse cursor as the par-
ticipants worked on the puzzles. Third, it delivered short
puzzle-solving strategy lessons, three times per puzzle: it
turned to face the participant and “bounced” its body up
and down while playing one of several pre-recorded spoken
messages with accompanying visuals appearing on screen,
overlaid onto the puzzle interface, see Figure 2(a). If a les-
son was going to be repeated, the robot would first apologize
for repeating itself (i.e., “I’m sorry to repeat this hint but I
think this will help.”).

To focus our efforts on the personalization of the interac-
tion, we did not use a vision system to detect state changes in
the puzzle board. Instead, the robot had perfect knowledge
of the game state via a software link to the puzzle interface.



3.2.2 Puzzle

To ensure the greatest likelihood of participants starting
the study at the same skill level, we chose a puzzle game that
is relatively obscure to American audiences: a grid-based fill-
in-the-blanks puzzle called “nonograms” (also called “nono-
gram puzzles”) that resemble crossword puzzles or Sudoku.
Nonogram puzzles are a relatively difficult cognitive task,
one that requires several layers of logical inferences to com-
plete. Solving a nonogram puzzle of arbitrary size is an
NP-complete problem [15].

The objective of nonograms is to, starting with a blank
board, shade boxes on the board such that the number of
consecutively shaded boxes in each row and column appear
as specified, in length and order, by the numbers that are
printed to the left of each row and above each column. For
instance, a row marked as “4 2”must have 4 adjacent shaded
boxes, followed by 2 adjacent shaded boxes—in that order,
with no other boxes shaded, and with at least one empty
box between the sets of adjacent shaded boxes. For a sample
puzzle and its solution see Figures 1(a) and 1(b).

We refer to these contiguous sets of shaded boxes as“stretches.”.
For instance, the row described above requires two stretches,
one of length 4, the other of length 2. One has solved a nono-
grams puzzle when one finds a pattern of blank and shaded
boxes such that all of the requirements for each row and col-
umn are satisfied. Some nonogram puzzles have more than
one solution, but most only have one.

In a typical puzzle, making progress on any row or column
depends on the boxes in the rows and columns that it inter-
sects. One must infer some parts of rows or columns based
on what one has already established by inference earlier in
the game. When a player has reasoned that some box should
be shaded, the player shades it; if he or she reasons that a
box will definitely not be shaded, they mark such boxes with
an ‘X’ for reference.

We created a full-screen nonograms interface that partic-
ipants used via mouse and keyboard. The user interface in-
cluded a game timer and a count of how many lessons (called
“hints”) the participant had received thus far and how many
more they would receive for that puzzle, see Figure 2(b).

Participants were asked to solve four puzzles on a ten-
by-ten grid with a time limit of fifteen minutes per puzzle.
The four puzzles chosen were identical for all participants
across all groups. The fourth puzzle was a copy of the first
puzzle, though disguised by rotating the puzzle 90◦, such
that the column requirements were swapped with row re-
quirements. This manipulation enabled us to make within-
subjects comparisons about the extent to which each par-
ticipant improved over the course of the study. There was
no indication that any participant became aware of this ma-
nipulation.

3.2.3 Skills & Lessons

Three times per puzzle, the robot interrupted the partici-
pant, paused the puzzle, and delivered a short lesson about
nonograms solving strategies. The lessons ranged from 21
seconds to 47 seconds in length and consisted of a voice
recording and a set of animations presented on screen dur-
ing the lesson as well as a set of coordinated robot motions
specific to each lesson.

When beginning a lesson the robot would turn to face the
participant and say “I have an idea that might help you,”
or “Here’s another hint for you.” During the lesson, the

(a) In this row, there must be one long stretch. By the
process of elimination one can infer that this stretch must
occupy at least the middle six boxes, no matter where in
the row it is placed.

(b) In this row, the first box is already shaded. Given that,
and that the first stretch must be 3 boxes long, one can
infer that the first three boxes must be shaded and the
fourth must be crossed out.

(c) In this row, there is only one short stretch and some
boxes are already shaded. One can infer that regardless of
where that one stretch is placed, it cannot occupy the first
two or the last two boxes in that row.

Figure 3: Examples of nonograms skills. Displayed
are the contents of a row before and after each skill
is applied. Although only rows are shown here, all
nonograms skills apply to columns as well.

robot faced the participant and bounced up and down ex-
cept when, in the course of the lesson, it referenced a visual
presented on screen, at which point the robot briefly turned
to face the screen. For instance, when the robot said “Like
in this example...” or “As you see here...,” the robot turned
briefly to the screen and then back to the participant.

Ten puzzle-solving skills were identified based on the sub-
jective experience of the authors. Each skill is defined as a
set of row or column states in which one can logically fill in
some remaining empty boxes based on what is already filled
in. For example, a stretch of length 9 can fit in a blank row
or column of 10 boxes in only one of two ways. Either it
fills the first box and the next 8, but not the last box, or it
fills the same middle 8 boxes and the last box but not the
first one. In either case, the middle 8 boxes must be shaded.
Following this pattern, one skills defined for this study is
that, for an empty row or column with only one stretch re-
quirement, n where n > 5, the center (2n − 10) boxes are
shaded. For example usages of this skill and two others, see
Figure 3.

For each of these ten identified skills, there was one pre-
recorded lesson. Three lessons were delivered per puzzle, for
each of four puzzles; at least two lessons were repeated per



participant. Lessons were triggered either when a partici-
pant made no moves for 45 seconds or as he or she filled in
the 25th, 50th or 75th box on the board of 100. Participants
were informed in the user interface of how many lessons were
remaining for each puzzle.

The lessons were chosen based on the participant’s ex-
perimental condition: either the lesson corresponding with
the skill that had the lowest internal skill assessment score
(in both personalized lessons conditions) or randomly cho-
sen from among the applicable lessons to the current game
board (in the randomized-but-relevant lessons condition). In
all conditions, the only lessons eligible were ones that had
an available application for the current board. This ensured
that each lesson provided information that was actionable
at the time the lesson was given.

3.2.4 Isolating Personalization

It was our intention to isolate the effect of personalization
in an educational human-robot interaction. To achieve this,
the randomized-but-relevant control condition chose lessons
that were relevant to the participant’s current board state
but not necessarily the ones that were best suited to their
skill level. This is intended to emulate a non-personalized
classroom setting in which a teacher chooses an appropriate
lesson for the class but not one that is necessarily tailored
to any individual student’s needs.

4. PERSONALIZED SKILL ASSESSMENT
The skill assessment algorithms presented here are not

proposed as optimal solutions to the skill assessment prob-
lem more broadly. Instead, we are interested specifically in
isolating what effect, if any, relatively simple personaliza-
tions have on education/assistive HRI.

To personalize the order of the lessons to suit the skills
of individual participants, we created two relatively simple
algorithms that assessed students’ skills as they solved puz-
zles. Both algorithms take as input the moves participants
make in each puzzle and produce as output a live updated
vector of ten elements, each representing the likelihood that
the participant has mastered one of ten predefined skills. In
both personalized lessons conditions, the robot gave users
the lesson that corresponded to their lowest scoring skill,
of the subset of skills relevant to their current board state.
The difference between the two algorithms is how the skill
assessment scores were computed.

For our purposes, a skill i is defined as a function si that
maps a potential state of the world (w ∈ W ) from before an
application of that skill to all potential resulting states after
that skill is applied. A skill is not applicable to a state w, if
and only if si(w) = {w}.

The skill functions are designed to be used in two ways:

* Skill functions are used to identify successful demon-
strations of a skill. Skill i is said to be demonstrated
at state wt if wt ∈ si(wt−1).

* Skill functions are used to identify missed opportuni-
ties to demonstrate a skill. Skill i is said to have gone
undemonstrated at previous state wt if no action was
taken and si(wt) 6= {wt}.

4.1 Additive Skill Assessment
In our first algorithm, we use a simple additive model to

update a vector of skill assessments.

Figure 4: The Bayesian network skill assessment al-
gorithm; an assessment of each skill is determined
by an independent network in the form above. The
upper nodes are internal states of the algorithm and
the lower nodes correspond to the robot’s observa-
tions of the user. For details see Section 4.2.

Given a set of skill definitions si ∈ S, this algorithm pro-
duces two internal Boolean functions for each skill i: a pos-
itive indicator pi and a negative indicator ni. pi takes as
input the previous and current world states and determines
whether proficiency in skill i could have been responsible
for this state transition (wt ∈ si(wt−1)). ni takes as input
a world state and determines whether the ith skill is appli-
cable to that state (si(wt) 6= {wt}). The positive indicator
functions are evaluated every time the state of the world
changes. The negative indicator functions are evaluated ev-
ery time the state of the world does not change for a given
delay, and at regular time intervals thereafter until the user
changes the state. In our implementation below, the initial
delay was set to 3 seconds and the regular interval was 1
second. These time delays are dependent on the task; the
ones used in this paper were chosen based on the authors’
subjective experience with the task domain.

The skill assessment ai,t for each skill i is produced at
time t as follows:

ai,t = d+

t∑

j=0

(ωppi(wj−1, wj)− ωnni(wj))

Each skill assessment ai,t starts at an initial seed value
of d = 50%, and is incremented or decremented by a linear
combination of the positive and negative indicator signals.
The relative weights of positive indications (ωp) to negative
indications (ωn) will vary with expected relative frequencies
of positive to negative indicators. In this application, we
expected positive indications to be rare relative to negative
indications; the weights we used were ωp = 50%, ωn = 1%.
A floor of 0% and a ceiling of 100% is applied to the summed
value at each timestep. The weights and seed value used
in this algorithm were subjectively derived and fine-tuned
based on pilot studies.

4.2 Bayesian Network Skill Assessment
A weakness of the additive skill assessment algorithm is

its susceptibility to local maxima and minima. When indi-
vidual skill assessments reach floor or ceiling, the additive
algorithm essentially ignores the participants’ performance
history. A good human tutor does not forget previous suc-
cesses or failures in light of more recent observations.



(a) Mean solving time per group, per puzzle. Participants
who received personalized lessons solved each puzzle after
the first significantly faster than participants in either of the
control groups, see Table 1. Participants in both personalized
groups performed approximately “one sigma” better on the
final puzzle than participants in either control condition.

(b) Pre-test/post-test puzzle solving times for individual par-
ticipants, separated by group. The fourth puzzle was the
same as the first, but disguised by a 90◦ rotation. Partic-
ipants receiving personalized lessons improved their same-
puzzle solving time significantly more than participants in
the control groups, p < 0.01.

Figure 5: Personalization produces greater learning gains: (a) Participants whose lessons were personalized
solved the last three puzzles faster than participants in either control group. (b) Participants receiving
personalized lessons significantly improved their same-puzzle solving time over participants in either control
group.

We addressed this weakness by offering a Bayesian net-
work approach. Bayesian networks provide a way of mod-
eling the relationship between observations and skill assess-
ment in probabilistic terms. For each skill, we used the
same graph structure with assumed independent variables
(see Figure 4). Skills in this representation are categorized
as either learned or not learned.

The following equation is used to estimate the student’s
proficiency with each skill individually:

p(Lt) = p(Lt−1|wt) + (1− p(Lt−1|wt)p(L0) (1)

where p(Lt) is the sum of the posterior probability that the
rule was already learned, regardless of the current world
state and the probability that the rule will make the transi-
tion to the learned state if it is not learned. In this exper-
iment, we chose not to model the possibility of forgetting
a skill. Our application domain was an interaction lasting
less than one hour, thus we deemed forgetting a skill to be
a relatively unlikely occurrence.

The two parameters are learned based on observations via
an Expectation Maximization (EM) algorithm. Expectation
Maximization requires starting points for each value it esti-
mates; in the experiment described below, EM was imple-
mented with seed values of 0 for p(LEARNED) and .5 for
p(MISTAKE). EM alternates between performing an expec-
tation step, which creates a function for the expectation of
the log-likelihood evaluated using the current estimate for
the parameters, and a maximization step, which computes
parameters maximizing the expected log-likelihood. This
method is commonly used to estimate the unknown param-
eters of a Bayesian network.

For both algorithms, the result is a vector of likelihoods
that the tutor has about the users’ proficiency with each in-
dividual skill. That information is used to select the most
appropriate lesson to suit an individual’s strengths and weak-
nesses.

4.3 Procedure
Before participating in this study, participants watched a

five minute instructional video describing the rules of nono-
grams and how to use our computer interface. In this video,
participants were encouraged to use logical reasoning to make
moves in the game, rather than guessing. Afterwards, any
questions were answered by an experimenter.

During the experiment, participants were alone in a room
with the robot, the computer, and a video camera positioned
behind them, see Figure 2. Participants chose when they
were ready to start each new puzzle. Games ended either
when the participant solved the puzzle or when fifteen min-
utes had elapsed, whichever came first.

After the conclusion of the final puzzle, participants were
asked to complete a survey consisting of three open-ended
questions and five Likert-scale questions. The questions
were designed to assess whether participants perceived the
lessons to be helpful, clear, and influential, as well as par-
ticipants’ perceptions of the robot. Participants rated how
relevant the lessons were to them, how much the lessons
influenced their gameplay, how well they understood the
lessons, and how “smart/intelligent” and, separately, how
“distracting/annoying” they perceived the robot to be.



(a) There is no significant difference between
groups in how participants rated their under-
standing of the lessons.

(b) Participants in both personalized lessons
groups rated the robot as significantly
less “distracting/annoying” than those in
the randomized-but-relevant lessons group,
p = 0.03.

Figure 6: Results of two survey questions answered by participants upon completing the experiment.

5. RESULTS
The central hypothesis of this study is that personalized

educational human-robot interactions will produce measur-
able behavioral differences when compared to non-personalized
interactions. The behavioral measure is the length of time
participants took to solve each of the four puzzles. For the
purposes of calculating a mean, puzzles that were not com-
pleted within the fifteen minute time limit were scored as
having been completed in fifteen minutes. The rate of fail-
ure was not significantly different between groups for any of
the four puzzles, varying from 29% to 38% in the first game
to 9% to 17% in the fourth game.

Game 1 Game 2 Game 3 Game 4

None 13.6± 2.2 13.0± 2.3 12.3± 2.5 11.6 ± 2.7

Rand-Rel 13.8± 1.4 12.5± 2.0 11.4± 2.3 10.3 ± 2.9

Additive 12.7± 2.6 10.0± 3.5 9.4± 3.0 7.6± 3.1

Bayesian 12.2± 2.3 9.8± 2.4 6.9± 3.4 5.2± 2.6

Table 1: Solving time means and standard de-
viations, in minutes. In each game except the
first game, participants in both personalized lessons

groups solved the puzzle significantly faster than
participants in both the randomized-but-relevant

lessons and no lessons groups (p < 0.03 for all).

Participants in both personalized lessons groups solved
three of four puzzles significantly faster, on average, than
those in either the randomized-but-relevant lessons or no
lessons groups, p < 0.03 for all, see Table 1 and Figure 5(a).
These results confirm the main hypothesis: personalized hu-
man robot interactions produced significantly improved user
performance than non-personalized interactions.

Between personalized lesson groups, the Bayesian group
did significantly better on the last puzzle than the Additive
group, t(37) = 0.05.

In this study, the fourth puzzle was the same as the first,
though disguised by a 90◦ rotation. There was no indica-
tion that any participant became aware of this manipulation.
The difference in completion times between the first and
fourth puzzles is a within-subjects measure of an individual
participant’s improvement over the course of the experiment.
According to this metric, participants in either personalized
lessons group improved (M = 5.8 minutes, SD = 3.3) their

same-puzzle solving time significantly more than those in
either control group (M = 3.1 minutes, SD = 2.4), t(31) <

0.01. See Figure 5(b).
Survey results indicate participants in the personalized

lessons groups rated the lessons significantly more relevant
to them (M = 4.9, SD = 1.4) than participants in the
randomized-but-relevant lessons group (M = 2.9, SD = 1.1),
t(33) < 0.001. There was no significant difference, however,
in how participants rated their understanding of the lessons
between groups, (M = 5.4, SD = 1.5) in the personalized
lessons groups and (M = 5.0, SD = 1.4) in the randomized-
but-relevant condition, t(36) = 0.32. Nor was there a signif-
icant difference in how participants self-assessed the degree
to which their gameplay was affected, (M = 4.3, SD = 1.3)
in the personalized lessons groups and (M = 4.1, SD = 1.3)
in the randomized-but-relevant condition, t(36) = 0.31. Par-
ticipants in the personalized lessons groups rated the robot
as smarter or more intelligent (M = 4.7, SD = 1.8) than
participants in the randomized-but-relevant condition (M =
3.5, SD = 1.6), t(36) = 0.03.

6. DISCUSSION
This study assesses whether personalization in educational

or assistive HRI produces beneficial behavioral changes in
users. The data indicate that personalization can lead to
behavioral differences in users that result in more successful
human-robot interactions.

In this puzzle task, we saw a “one sigma,” or one standard
deviation, improvement in participants final puzzle solving
time from those received personalized lessons over those re-
ceiving randomized-but-relevant lessons, see Table 1. One
sigma is more than the mean standard deviation effect size
that most software Intelligent Tutoring Systems produce
compared to classroom education alone, 0.76 sigma [3]. This
may be due to the nature of the puzzle game that was used
for this experiment. Success in nonograms requires several
layers of logical inference, to which participants who received
personalized lessons caught on more quickly than those in
the control groups. An early lead allowed these participants
to progress faster and perhaps feel more motivated.

The self-report survey data indicate that participants did
not report having more difficulty understanding the lessons



presented to them in the randomized-but-relevant lessons
group than in either personalized lessons group. All three
groups rated their level of understanding fairly highly: a
mean of 5.4 across personalized lessons groups and 5.0 in
the randomized-but-relevant lessons group out of 7, t(36) =
0.32, see Figure 6(a). It is notable that the randomized-
but-relevant lessons group reported a relatively high under-
standing of the lessons despite performing poorly. This may
indicate that this population was reluctant to admit when
they did not understand something.

Judging by survey free-response data, participants in this
study ranged greatly in their own evaluation of the useful-
ness of the lessons. One participant in the randomized-but-
relevant lessons group reported that: “Lessons were repeti-
tive and a little distracting, even frustrating.” In the person-
alized lessons conditions, some reported positive feedback
while others reported only frustration. A participant who re-
ceived personalized lessons, in response to a question about
whether the lessons affected his/her gameplay replied, “Not
really. I just learned by seeing what worked & what did not.”
However, judging by performance data, many participants
who reported disregarding the content of the lessons, seemed
to benefit from them just as much as the others. Some par-
ticipants in the personalized groups claimed to be unaffected
by the lessons but applied a lesson’s content more frequently
immediately after receiving lessons. From these survey re-
sults we conclude that a student’s perceived value of a lesson
may contradict with the lesson’s measurable impact.

The free-response survey data also offers insight into the
perception and impact of “easy” lessons. Many participants
reported that they found some lessons “easy,”“obvious,” or
“very obvious;” however, providing those lessons may not
have been a waste. Eight participants reported a variant of
the following sentiment: “Most hints I had previously explic-
itly figured out, though I found myself more actively seeking
the pattern(s) suggested by a hint.” This result highlights
the benefit of personalization based on behavior rather than
self-reported preferences.

7. CONCLUSION
In this paper we investigate the role of personalization in

educational/assistive HRI. We compare participants’ puzzle
solving times across four one-on-one robot tutoring condi-
tions, two of which were personalized to the learning progress
of individual participants and two which were not person-
alized. We find that participants who received personal-
ized lessons outperformed participants who received non-
personalized lessons in a pre-test/post-test performance met-
ric. We present these results as evidence that relatively sim-
ple personalizations can yield significant benefits in educa-
tional/assistive human-robot interactions.
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