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Abstract:

Early language and literacy skills are important foundations for learning and form
the basis of later academic success. Motivated by a growing scienti�c consensus that
language learning requires engaging students cognitively, a�ectively, and socially,
this thesis advances work to develop “social robot learning companions" that engage
with and adapt to students across di�erent language/literacy tasks to provide long-
term, scalable, and personalized learning assistance. Personalized student modeling
helps promote learning and engagement, but sophisticated modeling relies heavily
on student interaction data. In order to elicit useful amounts of personalized student
data, researchers have increasingly employed “long-term" interaction designs, which
occur over distinct sessions at di�erent times.

This thesis broadens the scope of single-task “long-term personalization" to
“multi-task personalization" across di�erent tasks. Both “long-term" and “multi-task"
personalized interaction designs are mirrored by an associated shift in algorithm
and model design: continual learning, which accounts for the temporal sequence in
which data is received, and transfer learning, which accounts for the task in which
data originates, using data from a ‘source’ task to learn a model in a di�erent ‘target’
task. The combination of these paradigms, which I call “lifelong personalization"
could lead to �exible personalized models that can better adapt to individuals over
time and across tasks.

This thesis is a presentation and evaluation of continual and transfer learning
methods, focusing on their impact on accuracy and data e�ciency of personalized
student models, and on student learning and engagement. To facilitate this
research, I have developed a uni�ed robotic game system for studying lifelong
personalization over two di�erent educational games, each emphasizing certain
language and literacy skills. The robot’s behavior in each game is backed by a
�exible Gaussian Process-based approach for rapidly learning student models
from interactive play in each game, and a method for transferring each game’s
learned student model to the other via a novel instance-weighting protocol
based on task similarity. By evaluating new methods for �exible, adaptive
student personalization within a suite of custom-designed games for promot-
ing students’ language/literacy skills, this thesis contributes both algorithmic
and human-centered insights for the future of educational human-robot interactions.

Thesis Advisor:
Cynthia Breazeal
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1
I N T R O D U C T I O N

The ultimate goal of this research is to develop better interactive robots
that can deeply personalize to individuals over long-term interactions. These
robots could be invaluable resources that could foster learning in ways similar
to those of the best human teachers, yet still provide the advantages of
digital technology such as data �uency, always-on availability, and scale of
distribution. Educational researchers have long recognized that a personalized
approach to pedagogy is one of the best ways of promoting learning (Pane
et al. [2015]; Bernacki et al. [2021]), yet in a world with increasing demand
for education, the availability of quali�ed teachers has not kept up with the
demand from students. Technology has an important role to play in realizing
the vision of personalized education for all. In recognition that learning is not
only a cognitive process, but also an emotional and a social process, in this
thesis I propose to design social robots learning companions that are capable
of modeling students, adapting to them, and introducing them to educational
material that is best suited for each student, presented in a way that takes
into account their individual learning di�erences.

A 2018 review (Belpaeme et al. [2018]) on the use of social robots as ed-
ucational tools concluded “[social robots] have been shown to be e�ective
at increasing cognitive and a�ective outcomes and have achieved outcomes
similar to those of human tutoring on restricted tasks" (emphasis mine). What
are these restricted task scenarios? “short, well-de�ned lessons delivered
with limited adaptation to individual learners or �exibility in curriculum".
Results from studies of single-session tutoring interactions with limited per-
sonalization paint an overall picture of bene�ts that are stable, positive, and
modest. In order to improve the impact of social robot tutoring technology,
researchers are looking towards educational interactions where personal-
ization plays a larger role, and to long-term interactions to develop deeply
personalized models.

Despite general recognition that long-term interactions enable a more
impactful approach for the �eld, developing agents capable of sustaining
long-term interactions is no simple feat. Some of the challenges researchers
face in sustaining long-term interactions include lower student engagement
(due to repetitive interactions and declining novelty), personalized models
that represent only limited aspects of student mastery (narrowly focused
models are more straightforward to implement and require less data to train),
and early stopping (due to cold-start model learning, leading to poor model
performance in early sessions).
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26 introduction

1.1 multitask personalization: personalized models across
task contexts

To address some of these challenges, I introduce an approach to long-term
interaction design called ‘multitask personalization’ in which students inter-multitask

personalization act with a social robot across di�erent task contexts throughout a long-term
interaction. Within each task, the robotic interaction partner learns a task-
speci�c personalized model of the student that is transferrable across tasks
throughout the long-term interaction, i.e., data collected from earlier inter-
actions with a student on a prior task can be used to improve personalized
model learning in a new task.

A multitask personalization approach has potential to address many of
the practical challenges associated with sustaining long-term interactions.
Student engagement is likely to remain higher over time when engaged in
di�erent, varied tasks with a learning partner, compared to repeating the
same task multiple times. Personalized student models can also draw on data
from a wider variety of task contexts in order to learn a more multifaceted
picture of a student’s mastery. And transferring data from interactions on
prior tasks can help speed up model learning on a new task, reducing the
risk of early stopping from cold-start learning.

In prior published research (Spaulding et al. [2021b]), I outlined the theo-
retical bene�ts of a multi-task personalization paradigm and evaluated the
combined-task pro�ciency and data e�ciency of the approach in models
trained to estimate simulated student mastery in two di�erent game tasks.
These games, called WordDecoder and WordBuilder, were developed in
partnership with experts in children’s media and early literacy learning, and
were designed to help young students practice di�erent literacy skills, namely
decoding and starting-sound identi�cation.

I developed a �exible Gaussian Process-based approach to modeling student
knowledge in each game task, with an instance-weighting protocol based
on task similarity that allowed for data transfer across tasks. This analysis
showed that multi-task personalization improved the sample-e�ciency of
model training, and was particularly useful for avoiding the problem of
‘cold-start’ modeling. This research was conducted with the assumption that
student knowledge was static, i.e., that students’ level of knowledge was
�xed throughout the interaction sequence.

In subsequent research (Spaulding et al. [2021a]), to further validate the
potential of multitask personalization for real-world scenarios — and recog-
nizing that in real human-robot educational interactions, a student is not a
�xed target but a dynamic one — I augmented the original multitask person-
alization approach with a continual learning module that enabled the joint
system to better support personalized modeling of dynamic/non-stationary
targets.
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1.2 continual learning: personalized models of non-
stationary targets

‘Continual Learning’ (CL) – a “learning paradigm where the data distribution Continual Learning

and learning objective change through time, or where all the data...are never
available at once" (Lesort et al. [2020]) primarily deals with the issue of
distributional shift over time, recognizing that, in the real world, temporal
data are not independent and identically distributed (IID), but rather drawn
from a distribution that may change over time, but without a clear signal
of such a shift (Lesort et al. [2020]). Continual Learning techniques attempt
to improve model performance as this shift occurs, often with an implicit
assumption that such shifts will be relatively smooth.
Multitask learning, on the other hand, focuses more on learning distinct Multitask learning

tasks with clear boundaries. In a typical multitask learning scenario, a learner
knows from which tasks its training data originated, assumes that each such
task is stationary and that its data is IID, and, frequently, the training data
arrive in a batch, rather than over time. These broad distinctions can largely
be characterized by a focus on task ‘shift’ versus task ‘switch’. However, this
boundary is not always strict, and researchers often work to address both
issues simultaneously (e.g., Ruvolo and Eaton [2013]).

As human-robot interaction (HRI) researchers have begun to adapt re-
search methods towards long-term interactions, continual learning methods long-term

interactionshave become more popular in the algorithms and models underlying these
interactions. Churamani et al. have detailed many advantages of adopting a
continual learning approach in developing a�ect-aware interactive robots
Churamani et al. [2020]. The authors highlight a number of important shifts
in viewpoint when adopting this approach, recognizing that human a�ec-
tive response is idiosyncratic (personalized), dynamic (changes over time),
and contextual (changes with task or environment). I argue that these same
qualities apply more broadly, to many aspects of human interactive behavior,
though in this thesis I primarily focus on student learning in educational
interactions. Indeed, some of the most salient markers of learning behavior
are a�ective behaviors, therefore it is only a short conceptual leap to hypoth-
esize that the bene�ts of Continual Learning applied to a�ect recognition
and response may prove similarly bene�cial when applied to recognizing
and responding to student learning behaviors.

Though Churamani et al. did not explicitly refer to long-term interac-
tions (LTI) with users, the theoretical frameworks of continual learning and
multitask personalization are natural �ts for the practical goal of sustain-
ing long-term interactions. My goal with this thesis is to demonstrate the
strengths of this combined approach by emphasizing their bene�ts in the
application domain of an agent attempting to model student knowledge in
the form of a CognitiveModel. Students’ knowledge is idiosyncratic (each CognitiveModel

student has their own private mastery model), dynamic (this model can
change over the course of an interaction), and contextual (student knowledge
can manifest di�erently in di�erent task contexts). A modeling approach that
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acknowledges and accounts for these qualities may be the key to successful,
personalized long-term interactions.

1.3 lifelong personalization: personalized modeling across
tasks and over time

In this thesis, I introduce computational methods that move beyond the
traditional algorithmic view of modeling student knowledge as supervised
learning of a �xed target, or “estimation" of mastery on a single task. Instead,
I adopt a broader view of student modeling that incorporates ideas from
both continual and multitask learning into an approach to long-term student
modeling as a process of personalization over time and across tasks, which I
refer to as ‘lifelong personalization’.

To motivate the use of this term and connect the dots between various
methods referred to in other literature, I outline here the relational structure
of several key concepts used throughout the remainder of the paper.
Personalized student modeling has been shown to help promote stu-Personalized student

modeling dent learning and engagement (Lindsey et al. [2014]; Ramachandran et al.
[2019]; Park et al. [2019]; Yudelson et al. [2013]). In order to advance the
degree and sophistication of personalized modeling, we require personal-
ized interaction data from a student. To elicit useful quantities and kinds of
personalized student data, researchers have been looking towards long-term
interaction designs (Leite et al. [2013]), which occur over several sessionslong-term interaction

at di�erent times. After observing shortcomings of single-task longitudinal
interactions, I introduced the idea of “multitask personalization" for inter-multitask

personalization actions which occur in di�erent task contexts (Spaulding et al. [2021b]). Each
of these paradigm shifts in interaction design are mirrored by an associated
paradigm shift in algorithm and model design: continual learning, which
accounts for the temporal sequence in which data is received and assumes a
dynamic or non-stationary modeling target, and transfer learning whichtransfer learning

accounts for the task in which training data originated and uses data from one
‘source’ task to more quickly learn a model in a di�erent ‘target’ task. When
these two algorithmic paradigms are combined, yielding �exible personalized
models that can model individuals over time and across tasks, I call this life-
long personalization, based on Parisi et al.’s de�nition of lifelong learninglifelong

personalization systems as “an adaptive algorithm capable of learning from a continuous
stream of information, with such information becoming progressively avail-
able over time and where the number of tasks to be learned (e.g., membership
classes in a classi�cation task) are not prede�ned" (Parisi et al. [2019]). This
concept structure is represented graphically in Figure 1.

Of course, these are not universal de�nitions of these terms, and researchers
may interpret or use these terms in slightly di�erent ways. In this thesis, I
primarily apply these de�nitions in the context of personalized interactive

modeling. Some works look at separate individuals as separate tasks (Jaques
et al. [2017]), others consider non-stationary task learning as the primary
hallmark of lifelong learning (Xie et al. [2020]). For the purposes of this thesis,
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Figure 1: Conceptual structure of terms and goals.

however, we restrict our discussion to the application of these paradigms in
the context of learning models of an individual over time and across tasks
for adaptive personalization.





2
B A C K G R O U N D

2.1 summary of research contributions and approach

While personalized social robot systems have been shown to improve stu-
dent learning over long-term interactions in pre-registered, large-sample
trials (Vogt et al. [2019]), most such systems are designed around a single
task and corresponding student model. Learning is a lifelong, multifaceted
process, yet student observations in one task are not used to update models
and policies of other relevant tasks. Machine learning systems are said to
exhibit ‘catastrophic forgetting’ when they perform poorly on previously
learned tasks after exposure to data from a new task. Yet despite substantial
recent progress in meta- and multi-task learning in Deep Reinforcement
Learning settings (Finn et al. [2017],Zhao et al. [2019]), when students in
educational interactions switch games (or even tasks within the same game),
the underlying models are not designed to ‘remember’ student data from
previous tasks at all!

To overcome the limitations of single-task repeated interactions, I devel-
oped a “multi-task personalization” transfer learning approach in which
students play multiple distinct games, with interaction data and inferred
player models transferred across games. I hypothesize three speci�c bene�ts
from multi-task personalization:

First, by integrating data from multiple activities into each game interac-
tion’s unique models, multi-task personalization may lead to more e�cient
use of data. Data e�ciency is particularly important for applied research in
real-world, personalized educational models, as data collection opportunities
for novel game designs with real students tend to be scarce, compared to other
application domains (e.g. player telemetry from already popular games).

Second, by enabling variety in educational tasks without (catastrophic)
loss of personalization, multi-task personalization may help maintain higher
levels of student engagement and mitigate the novelty e�ect over a long-term
interaction. Currently, the inability of models to transfer or generalize over
di�erent interaction types force researchers to rely on the same interaction
(or subtle variants) for several weeks, adding to the challenge of personalized
long-term interactions (Irfan et al. [2019]).

Finally, designing a multi-task personalization system with multiple dis-
tinct tasks may also prove bene�cial to educators and domain experts by
increasing the variety of multimodal interaction data that can be elicited, edu-
cational skills that can be taught, and personalized models that can be learned,
leading to a more holistic computational model of student players. Instead
of a four-session study to evaluate a student’s phonemic rhyme awareness,
followed by a separate four-session study to assess student’s alphabetic or
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spelling skills, our system design connects both skills to give a more complete
picture of a student’s learning progress in shorter time.

In addition, I propose to incorporate continual learning methods into
multitask transfer, improving the ability of the underling Gaussian Process
models to adapt to nonstationary modeling targets, a combined approach I
call ‘lifelong personalization’.

2.1.1 Overview of Approach

Transfer learning (Pan and Yang [2009]) is a class of machine learning meth-
ods involving a ‘source’ and ‘target’ task. Well-known sub-classes of transfer
learning problems (e.g., domain adaptation, multitask learning) are de�ned
based on the availability of data in source and target tasks, as well as the
degree of similarity between source and target task formulations.

In this thesis, the source and target tasks are CognitiveModels learned
during each game, which represent estimates of a student’s mastery of a
literacy skill (e.g. rhyming/spelling). These CognitiveModels take the form
of a Gaussian Process (GP), de�ned over a domain of 74 words called theGaussian Process

Curriculum. The set of words in the Curriculum is common to each ofCurriculum

the game tasks, but the geometry of the ‘word space’ is unique to each task,
formally de�ned by a covariance kernel that is the primary driver of GPcovariance kernel

inference. Each task’s covariance kernel computes how ‘close’ a pair of words
are to each other, and, therefore, how much an observation of skill mastery
of a particular word a�ects the posterior estimate of skill mastery of an
unobserved word.

For example, in WordDecoder, the primary literacy skill the game is
designed to assess and encourage is decoding: an observation of a student
correctly identifying the sounds corresponding to the letters ‘FALL’ should
increase the model estimate that the student is likely to also be able to decode
the letters ‘BALL’. This ‘closeness’ is re�ected in the design of the covariance
kernel for WordDecoder (see Section 4.1.3). Likewise, in WordBuilder, the
primary literacy skills guiding the game design are letter-sound pairing and
starting-sound identi�cation. An observation of a student correctly identifying
the beginning letter of ‘SNAKE’ should increase the model estimate that the
student is likely to be able to identify the beginning letters of ‘SNAIL’.

Our approach for multitask model transfer is to instance-weight speci�c
skill demonstrations of words, with the transfer weighting determined by the
similarity of that word’s use in the source and target tasks. Informally, the
covariance between a given word (e.g. ‘BALL’) and all other words de�nes
what that word means within the context of the speci�c task model. If, under
two distinct (source and target) task covariance kernels, ‘BALL’ has identical
covariance to all words in the Curriculum, then functionally, a positive
demonstration of ‘BALL’ under the source task conveys the same information
as a positive demonstration under the target task. To compute the transfer
weighting of a training instance (e.g. a demonstration of correctly decoding
‘BALL’), we look at the di�erence in the covariance between source and
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target tasks for ‘BALL’ and all other words in the Curriculum. See Section
4.2 for greater detail on the instance-weighting transfer algorithm.

Our approach to continual learning consists of a data structure and associ-
ated algorithm for ‘Continual Active Training DataManagement’ orCATDaM. Continual Active

Training Data

Management

Because Gaussian Processes do not naturally assign temporal information
to training data, they can be slow to adapt if the underlying distribution
generating the data shifts. With CATDaM, we augment each Gaussian Pro-
cess with a ‘memory’ that tracks the temporal and interactive context in
which training instances (i.e., observations of student learning behavior) are
received, and actively reduce the weight of ‘stale’ data that may no longer
re�ect the student’s underlying knowledge. For example, if a student fails
to correctly decode “DOG", but later the robot gives a demonstrative lesson
showing how to decode that word, CATDaM allows the model to reduce the
weight on the prior missed opportunity, knowing that the student’s mastery
may have changed after the lesson.

2.2 related work

2.2.1 Social Robots as Adaptive Language Learning Companions for Children

Social robots’ ability to interactively engage students has received increasing
attention in the past decade (Belpaeme et al. [2018]). Prior work has shown
how social robots can signi�cantly increase children’s engagement and lan-
guage/literacy skills, from vocabulary acquisition (Schodde et al. [2017]) to
word decoding (Spaulding et al. [2016]) and complex narrative generation
(Park et al. [2019]). In many of these projects, robots model students’ knowl-
edge and adapt the educational content and robot behaviors to promote
learning and engagement. These models can yield actionable insights into a
student’s current state of knowledge, estimates of interpretable parameters
like rate of learning, and information about students’ learning styles and
interaction preferences such as whether a student appears to be motivated
by competition or collaboration or how best to encourage students after
a setback. Field research studies (Vogt et al. [2019], Gordon et al. [2016]),
conducted ‘in-the-wild’ over several weeks at local schools have shown that
personalized social robot systems can e�ectively improve student learning
over long-term interactions.

Despite these recent advances, designing human-robot interactions that
maintain student engagement over the long-term remains a challenge, in part
because the basic interaction structure typically remains �xed over time. The
personalized models improve as additional interaction data are incorporated,
but because the models are designed for a single interaction task, the student
experiences little variety in the main activity over the course of a long-
term interaction. For example, students engaging in a vocabulary learning
interaction with a robot over several weeks would typically follow the same
pattern of hearing a lesson or playing a few rounds of a touchscreen-based
game with the robot, with the main di�erence being new content selected
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by an increasingly personalized model incorporating the prior week’s data.
After the �rst few interactions, children’s engagement tends to drop o�,
a phenomenon well-known among HRI researchers as the “novelty e�ect"novelty e�ect

(Baxter et al. [2016]).
Long-term interactions are one of the few ways to e�ectively obtain enough

data for deeply personalized models, and variety in interaction activities is
crucial to maintaining engagement and mitigating the novelty e�ect over
repeated interactions. If student models were designed to transfer across tasks,
long-term interactions would bene�t from more consistently high student
engagement and larger and more varied player data for model personalization.

2.2.2 Player Modeling in Interactive Games

Adaptive player modeling is an umbrella term for techniques using playerAdaptive player

modeling data to make inferences that a�ect subsequent gameplay (Yannakakis and To-
gelius [2018]). Sometimes called ‘Experience Management’ (Thue and Bulitko
[2018]), adaptive player modeling is the bedrock of research on developing
sophisticated interactive agents. Zhu & Ontañón highlight a number of re-
search applications for Experience Management techniques, most relatedly,
“interactive learning environments, including intelligent tutoring systems,
pedagogical agents, and cognitive science/AI-based learning aids" (Zhu and
Ontañón [2019]).

Real-world implementations of adaptive player modeling systems face
the technical problem of cold start learning. Analogous to the di�culty ofcold start learning

starting a motor after it has fallen into disuse, cold start’ learning refers to the
challenge of training an adaptive player model from real-time gameplay data.
Personalized models require gameplay data to learn, but data-poor model
instances perform poorly, so players choose not to interact with the system,
thereby depriving it of future data from which to learn (Lika et al. [2014]).
Transferable player models could help mitigate this problem by providing an
initial baseline of data-driven model performance, derived from data collected
during a prior ‘source’ task.

Recently, research applying multi-task learning to educational games has
used data from a group of students to train a predictive model of student per-
formance, treating each question of a game as a separate ‘task’ to learn (Geden
et al. [2020]). In our work, each task is an entire game (comprised of multiple
questions), and the task models are trained and transferred sequentially on
personalized data, rather than post-hoc on group data.

2.2.3 Transfer Learning and Nonstationary Modeling in Gaussian Processes

In general, rather than compiling laundry lists of related citations, I introduce
and cite prior work at relevant sections throughout this thesis. However,
owing to the more abstract nature of the following articles and less direct ap-
plicability to the following empirical content, I wish to brie�y highlight some
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particularly helpful articles that inspired this project in the area of transfer
learning and nonstationary modeling, as applied to Gaussian Processes.

Soh et al.’s formulation of transferrable trust models using Gaussian Pro-
cesses uses a similar kernelized ‘task ’ representation to our design of task-
speci�c CognitiveModels (Soh et al. [2020]). Snoeke and Adams outlined
an ‘input-warping’ method to address nonstationarity in Gaussian Processes
that provided a clear exposition of theoretical capabilities of GPs to handle
nonstationary functions (Snoek et al. [2014]). Cao et al. introduced us to the
idea of transfer-coe�cient based instance-weighting for Gaussian Processes
(Cao et al. [2010]), and our evaluation measures of transfer viability, e�ciency,
and pro�ciency are based on discussion in Rosenstein et al. [2005].

2.2.4 Perspectives on Lifelong Personalization

Long-term or Longitudinal Interaction (LTI) is a term used to refer to inter-
actions between a user and an arti�cial agent that unfold over multiple dis-
tinct encounters (Irfan et al. [2019]). In other words, “long-term interaction"
describes a practical paradigm for designing and evaluating interactions be-
tween users and agents. In the context of educational interactions, long-term
interactions have followed a pattern of users engaging in a single repeated
interaction structure (e.g., playing a single game or answering questions) with
updated content re�ecting the output of increasingly personalized models
trained on data from the previous interaction sessions (Leite et al. [2013]).
While this type of repeated single-task interaction has formed the bulk of
long-term interaction research to date, there is a recognition that we may
be near the useful limit of current single-task paradigms, and that future
breakthroughs in sustaining long-term interactions will come from research
developing agents that can personalize to a user’s changing behaviors and
preferences over time and across task contexts.

Many researchers, across a wide swath of computer science and arti�cial
intelligence have written in recent years about the pitfalls and promise of
adaptive personalization, long-term interactions with intelligent agents, cross-
task generalization, and the bene�ts that systems exhibiting these capabilities
may bring to society:

Johnson and Lester, in an article re�ecting on 20 years of research to predict
future trends for pedagogical arti�cial agents wrote: “Conventional domain-
speci�c learner models may be useful for pedagogical agents in the short
term, but they will be of limited value over time as learners move between
learning experiences. (Johnson and Lester [2018])”

Melanie Mitchell, weighing in on the utility of modern AI systems, wrote:

In fact, the theoretical basis for much of machine learning re-
quires that training and test examples are ‘independently and
identically distributed’ (IID). In contrast, human learning — and
teaching — is active, sensitive to context, driven by top-down ex-
pectations, and transferable among highly diverse tasks, whose
instances may be far from IID. (Mitchell [2020])
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Zhu and Ontañon have written cogently about the “personalization para-
dox", the tendency of adaptive systems to induce distributional shift in the
subject of the model

“The key underlying problem is that while user modeling tries to
acquire a model of some aspects of interest of the user (such as
their preferences), personalized adaptation changes the context
the user interacts with....A special case of this problem occurs
when the goal of the personalization system is to induce be-
havior change....the system’s explicit goal is to push the user’s
preferences or behavior in a particular direction. As a result, user
modeling might re�ect the user at the start, rather than what
she has become."(Ontañón and Zhu [2021])

Finally, in a lecture addressing future challenges for the �eld of Learning
Analytics, Ryan Baker identi�ed “transferability" as the �rst of a series of
challenge problems for the �eld to tackle over the next 20 years, writing

A modern learning system learns a great deal about a student —
their knowledge at minimum, and increasingly their motivation,
engagement, and self-regulated learning strategies. But then the
next learning system starts from scratch...It’s like there’s a wall
between our learning systems...If you seek better learning for
students, tear down this wall! (Baker [2019])

Fundamentally, personalized student data remains a major practical chal-
lenge towards achieving successful interactive educational systems. Single-
session educational interactions in HRI (e.g., some reviewed in Belpaeme
et al. [2018]) generally do not provide enough data to learn interesting and
distinct personalized models capable of sustaining extensive learning gains
or engaged interaction in the long-term. Thus far, successful examples of
long-term adaptive personalization tend to repeat a carefully designed inter-
action centered on a single task over several sessions to augment the dataset
(Ramachandran et al. [2019]; Park et al. [2019]).
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3.1 personalized literacy game system

To investigate the algorithmic e�ects of multitask personalization and life-
long learning in students, researchers in the Personal Robots Group have
developed an integrated, deployable social robot system capable of sustain-
ing language/literacy practice between young students and a robot through
game-based interactions.

We have used this system to investigate multitask personalization via
player model transfer between two games, called WordDecoder and Word-
Builder, which are designed to help young students practice a variety of
early literacy skills through interactive co-play with an adaptive, personalized
robot tutoring agent. Both games were developed for Android tablets using
the Unity game engine, and receive robot action command and relay player
input through ROS (Quigley et al. [2009]) to a backend system controller. The
games were developed for children learning to read, approximately ages 5 to
7, and throughout the design and development process we consulted experts
in children’s media design and early childhood literacy to ensure that both
the content and game designs would be age-appropriate and aligned with
the overall educational goals of the project.

As the child and robot play each game together, the robot tutoring agent
learns a Gaussian Process model, which we refer to as the CognitiveModel,
that estimates the child’s ‘mastery’ of the game. Both games share a
Curriculum of words, which serves as both a list of words a student can
encounter in the game as well as a uni�ed domain space for the underlying
CognitiveModels of each game. In other words, the CognitiveModel is
an estimate of how likely the student is to successfully apply the primary
literacy skill (rhyming, spelling) to each word in the Curriculum, based on
observations of their prior gameplay. Each game has undergone playtesting
validation and the Curriculum was curated by experts in early childhood
learning to ensure a representative set of 74 words that are generally pho-
netically, orthographically, and semantically (e.g. animals, foods, household
items) age-appropriate and regular.

The personalization model employed is implicitly based on a theory of
‘mastery learning’, in which a learner’s current knowledge forms the basis of
subsequent lessons, with an emphasis on in-task performance, skill mastery,
and learning e�ciency. While mastery learning is one of the most popular
theories of learning for computational modeling, Bernacki et al. give an ex-
cellent overview of the various ways in which personalized learning systems
implicitly correspond, in part or in whole, to a wider myriad of learning
theories (Bernacki et al. [2021]).
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Figure 2: An integrated social robot platform that supports di�erent game “tasks".

3.1.1 Cloud-connected Deployment Station

As part of this thesis, I contributed to the development of cloud-based in-
frastructure systems to support long-term, unmanned deployments of social
robots. These systems must possess an unusually high degree of reliability
and robustness. They must be capable of remote monitoring, updating, and
troubleshooting, even if one or more components fail, or if underlying in-
frastructure outside of the team’s direct control is disrupted (e.g., power or
internet access at the deployment site).

The basic unit of the deployment architecture is the Station, which consists
of a Jibo Robot set inside a plastic Housing. Within the Housing is: aJibo Robot

Samsung S5 Tablet, Front-facing Camera, and an Intel NUC, (an onboardIntel NUC

computer that serves as the primary remote access point for the station). The
NUC runs several docker containers that support the games, robot, sensor
devices, and communications between them. S02-ROS-usb-cam is a container
that runs on startup and interfaces with the device hardware (e.g. Front-
facing Camera). The remaining containers are all instances of the same
image, the mitprg/ros-bundle package. This package includes A�dex binaries,
ROS, the latest versions of the game controllers, and a game launcher module
that communicates with the tablet and invokes the various game controllers
as necessary. Figure 2 shows a recent picture of the operational station.

3.1.2 WordDecoder and WordBuilder: Designing Games for Early Literacy

The gameplay and design of WordDecoder and WordBuilder centers
around the family of literacy skills known as phonological awareness and
phonemic articulation. In plain English, these are early literacy skills that
center on familiarity with recognizing and reproducing the basic sounds of
spoken language. Throughout this thesis, we have taken substantial domain
guidance from the Phonemic Awareness Literacy Screening (PALS) project
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Figure 3: The Russian alphabet can be roughly divided into four categories based on
their familiarity to English speakers. Some letters have a similar symbol
and similar sound, others have unfamiliar symbols and make unfamiliar
sounds.

(Marcia Invernizzi [2015]), a set of resources developed by the University
of Virginia and the Virginia Board of Education that ‘provides a measure of
children’s knowledge of several important literacy fundamentals: phonologi-
cal awareness, alphabet recognition, concept of word, knowledge of letter
sounds and spelling". PALS has been extensively researched and validated as
a useful tool for assessing early literacy skills, particularly in the context of
early reading interventions, in both mono- and bi-lingual populations Huang
and Konold [2014]. Speci�cally, WordDecoder is designed to help assess
and promote ‘letter-sound pairing’, and WordBuilder is designed to help
assess and promote ‘starting-sound identi�cation’ (Marcia Invernizzi [2015]).

3.1.2.1 Russian language game redesign

These games went through several design revisions, and due to the COVID-19
pandemic, were adapted in several keys ways to �t new experimental realities.
While they were originally designed and playtested for young readers of
English, in March 2020 MIT’s Institutional Review Board prohibited research
activity with minors. Over the course of the following two years, these
prohibitions would be gradually relaxed, but research with our original
target population (students from ages 5-7) would not be permitted until
April 19th 2022, nearly two years after the original restrictions. In order to
keep making progress, in September 2021, we decided to re-orient our �nal
human-subjects evaluation around vaccinated MIT undergraduates. Both
games were redesigned for second-language learning, speci�cally learning
Russian.

Russian has a number of nice properties, especially because learning its
alphabet preserves some of the di�culty of mapping symbols and sounds that
early readers experience. The Cyrillic alphabet features letters with varying
degrees of similarity to the Latin alphabet. Some letters (e.g. ‘M’, ‘T’) have the
same sound and symbol in both alphabets. Others require mapping familiar
symbols to new sounds, learning new symbols, or even learning new sounds
altogether.
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Figure 4: A round of WordDecoder, adapted for Russian language learners. MAD is
the Target word, other words are SAD, GOAT, and TRAIN.

3.1.2.2 WordDecoder

WordDecoder is a two-player game that proceeds in a series of rounds, each
of which o�ers a chance for either the robot tutor or the student to select
a word that is ‘encoded’ in the letters. At the start of each round, the tablet
shows the letters that spell out the ‘Target’ word at the top of the screen (see
Figure 4), with four graphic images, smaller pictures of other words from the
Curriculum, below. Exactly one of these word graphics is the ‘Target’ word
spelled out by the letters. The �rst player to correctly decode the Prompt and
touch the rhyming Prompt word graphic is awarded points, after which the
graphics clear and the next round begins.

The robot player is presented to the human player as a co-playing peer, and
its outward behavior a�rms this framing: the robot player selects Prompt
word graphics just as the human player does, gives a mixture of correct and
incorrect responses, and responds with appropriate socio-emotional behav-
iors to in-game events (e.g., acts excited when scoring points, disappointed
when incorrect, encouraging when human player scores points).

3.1.2.3 RhymeRacer - an early version of WordDecoder

RhymeRacer was an early version of WordDecoder that was designed to
help assess and promote ‘rhyme awareness’ . In this version of the game, the
robot tutor or the student are asked to select the word that rhymes with a
central ‘prompt word’. At the start of each round, the tablet shows a picture
of the ‘Prompt’ word in the center of the screen (see Figure 5), surrounded
by four ‘Target’ word graphics, smaller pictures of other words from the
Curriculum, exactly one of which rhymes with the Prompt word. The tablet
also gives a recorded audio prompt, saying “What rhymes with [Prompt
Word]?” as the images are displayed. The �rst player to correctly tap on the
rhyming Target word graphic is awarded points, after which the graphics
clear and the next round begins.
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Figure 5: A round of RhymeRacer. FALL is the Target word, Prompt words are RAIN, COAT, PAIL, and
BALL.

3.1.2.4 WordBuilder

WordBuilder is the second game developed to study multitask personaliza-
tion in long-term interactions. It was speci�cally designed to complement
WordDecoder and went through a similar design process, including playtest-
ing, consultation with educational experts, and content and asset revision by
experienced children’s media designers. Most of the visual assets are shared
across both games, including the graphics of the Curriculum words, both to
help reinforce students’ understanding, and also, practically, to help ensure
that the correlation between student performance in the two games is based
on students’ mastery of the underlying skills, not on factors related to the
game interface design.

WordBuilder serves as a counterpart to WordDecoder in two main
ways: First, WordBuilder is designed to help students practice Letter-Sound
pairings and starting-sound identi�cation (phonetic skills), rather than de-
coding (an alphabetic skill), to broaden the curricular coverage of the uni�ed
system. Much like WordDecoder, gameplay proceeds through a discrete
series of rounds, each associated with a round ‘Target’ word whose graphic
is displayed at the top of the screen.

At the start of each round, participants hear the translated Target word
pronounced out loud by the tablet. The letters which spell out the translated
Target word are placed in letter slots in the center, except for the letter that
forms the “starting sound" (phoneme) of the word. Surrounding the center
letters are the ‘true’ starting letter and 5 distractors in a random order and
location (see Figure 7). Within each round, the student and the robot work
together to select the correct starting letter, based on the pronunciation of the
Target word and the sound of each letter. The round ends when the submit
button is pressed, and the human-robot team scores points if the team placed
the correct starting-sound letter of the Target word into the letter slot. The
completed word is then displayed on the right side of the screen, and the
next round starts.

These games were designed together to study multitask personalization
in long-term interaction. They share several task design qualities that are
advantageous for enabling transfer (indeed, they were designed with trans-
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Figure 6: Screencap of a single ‘round’ of WordBuilder. Participants hear the trans-
lated Russian word pronounced and see all letters spelled out except for the
starting letter. Participants have to use their knowledge of Russian-English
letter-sound pairings to select the correct starting letter

fer speci�cally in mind): a common software and system architecture and,
notably, the word-space Gaussian Process modeling paradigm described in
Section 4.1. Transfer learning problems in which the source and target task
share a domain (input and/or label space) are termed ‘homogeneous’ transfer
problems, and are generally considered more straight-forward to address than
the broader class of ‘heterogeneous’ transfer problems (involving di�erent
domains), which are essentially unbounded in di�culty.

Our approach to student model transfer between WordDecoder and
WordBuilder represents a solution to ‘partially heterogeneous’ transfer
problems: those which involve overlapping, but not exactly equal, domains.
In this case, the input space is the Curriculum of words used in each game.
Each game has its own Curriculum, designed based on the speci�c literacy
skill emphasized and selected from a larger pool of age-appropriate word lists
for early readers. For instance, WordDecoder has more words with shared
rhyme endings, and WordBuilder has more words clustered around shared
starting sounds. Despite the inexact overlap in task curricula, our transfer
method is capable of transferring not only shared words from source task to
target task, but even source task words that do not appear in the target task
(and vice versa). More detail on this procedure is provided in Section 4.2.1.

3.1.3 Strategy and Content Models: Adaptive Gameplay and Content Person-

alization via Cognitive Modeling

By committing to a nonstationary model of student learning, this project puts
new emphasis on the robot tutor’s demonstration actions. At various points
in both games, either the student or the tutor will have an opportunity to
respond to a word presented from the Curriculum. The ContentModel de-
termines which speci�c words, drawn from the Curriculum, are presented,
while the StrategyModel determines whether the student is prompted toStrategyModel

respond (giving a ‘sample’ of training data for the CognitiveModel) or
whether the robot responds (providing a ‘demonstration’ that can poten-
tially improve student learning). This paradigm of interwoven ‘samples’ and
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‘demonstrations’ that mix assessment and learning is an example of the
‘stealth assessment’ design pattern, commonly used to achieve educational
goals in interactive games without breaking immersion and experience �ow
Shute and Ventura [2013].

The StrategyModel is parametrized by a single weight,ω, which incorpo-
rates the recent history of gameplay and the amount of model data to balance
the robot’s strategy with respect to student engagement. At each action deci-
sion point, the StrategyModel selects probabilistically from two “strategy
actions" — OBSERVE and DEMONSTRATE, choosing OBSERVE with proba-
bility ω and DEMONSTRATE otherwise. When the StrategyModel selects
the OBSERVE action, it gives the child an opportunity to respond, prompting
a response if none is immediately forthcoming. When the StrategyModel
selects the DEMONSTRATE action, the robot proactively gives its own re-
sponse: a correct answer and an explanation of its reasoning. Originally, the
games featured a larger robot action space, including the opportunity for the
robot to take actions such as "EASY WIN", introducing a word that the model
predicts a student would be likely to answer correctly, and "MAKE MIS-
TAKE", whereby the robot intentionally makes a mistake. These actions were
intended to boost students’ a�ective state, by instilling con�dence through
correct answers or mitigating disappointment by showing that all players
make mistakes. However, as the focus of this thesis sharpened to understand-
ing the impact of transfer learning on cognitive modeling, we excluded these
actions from the �nal study.

The ω parameter (Equation 1) essentially moderates the rate of ‘explo-
ration’ versus ‘exploitation’ in the robot’s behavior: exploration corresponds
to the OBSERVE action, obtaining more information for the Cognitive-
Model, exploitation corresponding to the DEMONSTRATE action by my-
opically pursuing learning gains. ω naturally rises over the long term as the
model gets more samples, but in later rounds, a robot that always chooses
the DEMONSTRATE action might not be very encouraging for a student to
interact with. In order to align the agent’s StrategyModel with the short-
term gameplay context, we add a penalty term for each robot demonstration
in the past 5 rounds, to ensure students continually have the opportunity to
fully participate in answering.

ω = .25+ .05 ∗n− .5 ∗ (pr) (1)

where n is the number of samples the model has already OBSERVEd and pr is
the percentage of DEMONSTRATE actions taken by the robot in the last 5 rounds.

The ContentModel determines what speci�c words from the ContentModel

Curriculum are presented to the players, and in what order. In this
project, the ContentModel selects words via an Active Learning protocol,
which selects the word that best aligns with the goals of the tutor’s selected
strategy, given the current estimated CognitiveModel of the student. For
instance, if the current tutor strategy is OBSERVE, the ContentModel
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selects the word with the maximum uncertainty under the most recent
posterior CognitiveModel, i.e., the word where the agent is least con�dent
about its estimate. If the current tutor strategy is DEMONSTRATE, the
ContentModel selects the word with lowest variance of all words with
negative posterior mean, i.e., the word that the agent is most con�dent that
the student has not mastered.

In order to e�ectively teach a student, the agent must know what words
the student has already mastered and which it has not. Therefore the agent
faces the twin challenge of simultaneously estimating a student’s individual
knowledge state while using its latest estimate to teach new content, though
the act of teaching itself may change the student’s underlying knowledge. The
StrategyModel balances these two objectives, while the ContentModel
employs active learning to improve both objectives, speeding up both model
learning and student learning. As the number of demonstrations increases
over time, shifting the student’s knowledge and, therefore, the distribu-
tion from which their observed ‘samples’ are drawn, the tutoring agent
employs a form of ‘negative’ active learning to remove past samples from
the CognitiveModel training set. We expand on the implementation of this
‘continuous active training data management (CATDaM) in Section 4.2.2.
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G A U S S I A N P R O C E S S E S : F L E X I B L E I N - G A M E S T U D E N T
M O D E L I N G

4.1 gaussian processes: flexible in-game student modeling

4.1.1 Gaussian Processes Overview

The fundamental modeling approach behind each game’s estimate of a stu-
dent’s cognitive task mastery is Gaussian Process (GP) regression in a domain
space of words from the Curriculum, essentially identical to the model de-
scribed in Spaulding et al. [2018]. A Gaussian Process is a �exible, probabilistic
model that is well-suited for regression modeling in data-sparse applications
in which domain knowledge can be encoded as a covariance function. Tech-
nically, a Gaussian Process is a distribution over possible functions, where
the distribution of function evaluations at a �nite set of points is jointly Gaus-
sian. Put di�erently, a Gaussian Process (GP) is a distribution over functions,
de�ned over some input domain, where the joint distribution of the functions
at any �nite set of domain points is jointly Gaussian, i.e. at any particular
domain point (x ∈ X), the GP posterior is Gaussian (i.e de�ned by a mean
and variance), {µx,σx}.

A Gaussian Process is itself parametrized by a mean function and a covari-
ance function. In discussing GPs, we say that functions, de�ned over a domain
X, are distributed according to a Gaussian Process with mean function µ,
and covariance function k (Eq. 2). Functions are sampled (or ‘realized’) from
the GP posterior by combining samples from the GP posterior at a set of
domain ‘test’ points (the GP posterior at each point has a normal form). The
mean and variance of the GP posterior at each test point is driven by two
factors: First, a set of observed training data, D = {{x0,y0}...{xi,yi}}, and
second, the covariance function, k(x, x ′) that relates how ‘close’ two points
in the domain are to each other – more technically, the degree to which the
posterior predictions at two domain points are correlated.

When the covariance function is designed as a nonlinear distance map, the
GP covariance function is referred to as a covariance kernel, and Gaussian
Process inference is sometimes framed as a method for estimating the value
of unobserved ‘test’ points based on observed ‘training’ points and a kernel
that computes distances between training and test points. This view, perhaps
more familiar to practicing data scientists, casts Gaussian Process inference
in the framework of supervised learning. Gaussian Processes are widely used
across a variety of real-world domains in part, for their ability to perform well
in data-sparse applications Wang et al. [2005] and for the ready interpretation
of their posterior as function estimates with uncertainty bounds.
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Figure 7: Plate notation model of a non-stationary Gaussian Process.

f(x) ∼ GP(µ(x),k(x, x ′)) (2)

In other words, a GP is a probabilistic inference model that makes Gaussian
predictions over a set of output points, based on a set of observed data points
{xi,yi}. The GP posterior is largely driven by the covariance function or ker-
nel of the GP, which de�nes a pairwise distance between domain points, i.e.,
how much each labelled point from the training set contributes to posterior
inference at each other output point. Once the domain and covariance kernel
are de�ned, GP inference is fairly straightforward Rasmussen and Williams
[2005]. The covariance kernel, therefore, de�nes the ‘task’ modeled by the
GP output predictions.

4.1.2 Gaussian Processes in Word Space: empirical implementation

A Gaussian Process can �exibly represent a wide variety of domains and
can be tailored by model designers to incorporate domain knowledge via
the covariance kernel. In this section I discuss the implementation of this
approach, applied to modeling student’s literacy skills in separate game
tasks, de�ned over a shared domain of English language words, called the
Curriculum.

Because each game task may only be able to access a small amount of
personalized data, the combined system leverages the shared domain to per-
form instance-weighted data transfer across game tasks, allowing a model
targeting one particular literacy skill (e.g. decoding) to incorporate person-
alized data obtained from an interaction focusing on a di�erent literacy
skill (e.g. starting-sound identi�cation). As previously discussed, this thesis
also extends the approach to nonstationary environments, by augmenting
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the conventional Gaussian Process with a ‘continuous active training data
management’ protocol, that acts as a mirror to the active learning protocol
pursued by the ContentModel. Instead of selecting domain points to add

to the training set based on the GP posterior, the CATDaM protocol selects
points already in the GP training set to remove (see Section. 4.2.2)

In the word-space domain, each input data point is a word from the
Curriculum and a score from [-1, 1], where -1 represents complete lack
of mastery, 1 represents full mastery, and 0 represents neutral mastery. For
each point in an output set, the GP model computes a posterior mean and
posterior variance {µi,σi}, which, in this application, represent the posterior
estimate that the student can apply the modeled skill to the output word
(e.g. correctly decode the word ‘FALL’) and the uncertainty surrounding that
estimate.

Under the framework of supervised learning, the GP prior mean function
is conventionally set to 0 everywhere, leaving the covariance as the primary
way for researchers to encode domain knowledge in the model ‘design’. In
fact, because the two task CognitiveModels di�er only in their covariance
kernels (they share all other hyperparameters), the covariance functions
functionally distinguish, and therefore de�ne the game task (with respect to
each other). In other words, because the two CognitiveModels share an
input space, mean function, and noise hyperparameters, the di�erence in
their posterior estimates, if provided with the same training data, is solely
driven by the di�erences in their covariance functions.

The training data take the form of a ‘target word’ from the curriculum and
a score, representing an estimate of skill mastery applied to the target word,
derived from gameplay. Scores range from [-1, 1], representing the student’s
demonstrated level of skill mastery applied to that word during gameplay,
providing an intuitive scale for interpreting training data and, hence, the GP
posterior.

A Gaussian Process is a regression model, and can therefore handle a con-
tinuous label space, but the design of the WordDecoder and WordBuilder
game input gives only a discrete, binary signal: whether the student selected
the correct decoded word (or ‘starting-sound’ letter) or not. To map from
the binary signal of response correctness, we blend that information with
continuous contextual features like timing. The �nal score (yi) for a round
Target word (i.e., a ‘sample’) (xi), is derived by adding a timing adjustment,
p(td), to the ‘correctness’ binary variable (1 or 0), to correct for the possibility
of guessing.

The timing adjustment is computed via a Latency Operating Characteristic
(also known as Speed-Accuracy Trade-o�) curve. While many mathematical
models of the relationship between choice accuracy and response timing
have been hypothesized including sequential sampling models (SSMs), and
random walk (RW) models, we use a two-state mixture of random guesses
(MRG) model (Lappin and Disch [1972]), with di�erent parameters for each
state a�ecting response-time and accuracy, to derive the �nal score.



48 gaussian processes: flexible in-game student modeling

If the selected word is correct, the timing adjustment is assessed as a
discrete, step-wise penalty of .1 based on the number of seconds it takes to
give an answer, i.e, p(td) = 0.1 · td where td is the time of delay in seconds.
For example, if a student selects the correct Prompt word for a round within
the �rst second, they receive no penalty, but if they selected the correct
Prompt word after 5 seconds, they receive a penalty of p(td) = 0.5. If the
selected word is not the correct word, the penalty is assessed as p(td) =

0.1 · (MAX_TIME− td), re�ecting the idea that a longer time spent thinking
about an incorrect answer demonstrates more potential mastery than a hastily
entered guess (Heitz [2014]). The timing values are scaled di�erently in
WordBuilder, but follow the same procedure. In both cases, the �nal timing
adjustments are clamped to the range [0.05, 1] before instance-weighted
transfer.

4.1.3 DesigningWordDecoder andWordBuilder Covariance Functions: A Gaus-

sian Process example in word-space

The key di�erence between the two game CognitiveModels is their covari-
ance kernels, which compute a distance metric between words in the Cur-
riculum, bringing pairs of words ‘closer’ together when their task outputs
(i.e., estimated student mastery) are more highly correlated. In WordDe-
coder, the covariance function is based on the cosine distance between the
GloVe semantic word vectors (Pennington et al. [2014]) of each domain word,
plus an additional term that increases the covariance between two words
which share a �nal phonetic ending (i.e., when words are part of the same
rhyme group) (Eq. 3). This combination of semantic and phonetic informa-
tion has previously been validated by in-person student studies (Spaulding
et al. [2018]), and was developed with input from external collaborators with
expertise in early language and literacy skill development.

Covrr({wi,wj}) = ν[α+ cos(GloVe(wi),GloVe(wj))], (3)

where α = 1.0 i� wi and wj share a phonetic ending, and 0 otherwise. ν is a
normalization constant.

WordBuilder’s covariance function, re�ecting the game’s letter-based
focus is based on orthographic information – information about the letters
that make up a word’s written form. The foundation of the covariance kernel
is the Levenshtein distance, normalized over the combined length of the two
words (Eq. 4). Levenshtein distance, also known as minimum edit distance,
counts the number of single-letter additions, deletions, or substitutions (i.e.
‘edit’s) to convert one string into another. In essence, this kernel re�ects the
idea that words which are orthographically closer to each other are more
likely to be mastered together, or not.

Covwb({wi,wj}) = ν[α+ Levenshtein(wi,wj)], (4)
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Figure 8: (a) Gaussian process prior, (b) GP posterior after one observation of student
response, (c) GP posterior after several rounds of observation and inference.
Mean estimates range from [−1, 1] and variances from [0, 1].

α = 1.0 i� wi and wj share a beginning letter, and 0 otherwise. ν is a nor-
malization constant.

In both tasks, the covariance kernels primarily function to help the GP
CognitiveModels quickly generalize from observed samples to words not
yet seen in the curriculum, improving the e�ciency of model learning, as
well as enabling the ContentModel to make personalized choices about
which words from the curriculum to introduce in the games.

4.2 transferrable gaussian processes: instance-weighting
based on task covariance similarity

Both WordBuilder and WordDecoder models work well on their own
as single-task models (see Section 5.2.1 for single-task baselines), but the
broader goal of this project is to transfer observed training data from one
game’s CognitiveModel to a CognitiveModel targeting the other game,
i.e., multitask personalization.

Both games’ models share the same underlying Gaussian Process form,
de�ned over a word space from the Curriculum. Unique to each game task
is the geometry of this space, de�ned by the respective covariance kernels.
How should we leverage this uni�ed representation to transfer data from a
source task to a target task (and back)? Because the two tasks are broadly
related (i.e. both early literacy skills, and individual mastery likely correlated
between them), we could consider simply adding all observed source task
data to the target task training set. However, this approach ignores that some
source task data points are more informative to the target task than others.
In other words, the correlation of source task output with target task output
varies over the word space domain. Moreover, we can use the de�nitions of
the covariance kernels to compute a metric of task similarity at each domain
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input point, which gives us a score of how similar the local geometries are for
each task. We can interpret this instance-speci�c task similarity metric as a
transfer coe�cient. ‘Instance-weighting’ refers to a family of transfer learning
methods for training a target task model on source task data, where the
source-task data are re-weighted (a very simple form of task-transformation)
before incorporation into the target-task training set (Pan and Yang [2009]).
Thus we describe our transfer learning approach as an instance-weighting
method, where each instance’s transfer coe�cient is derived from a similarity
metric between each word’s use in one game and its use in another (Eq. 5).

The covariance function of WordDecoder encodes the domain knowledge
that words which share an ending are ‘closer’ to each other (i.e. if you can cor-
rectly decode DOG, you are more likely to be able to decode FROG) (Lenel and
Cantor [1981]). Likewise, the covariance function of WordBuilder encodes
the domain knowledge that words which share similar letters are ‘closer’
to each other (i.e. if you can correctly spell CAT, you are more likely to be
able to spell CAR). When computing the instance weight of ‘(DOG, .85)’, if
knowing DOG impacts the inference of other words in the source task in
a way similar to how knowing DOG impacts inference in the target task,
then DOG should be weighted roughly equally (i.e. close to 1) in the target
task. More concisely, the greater the source-target similarity in word-space
geometry around a domain point, the higher the transfer weighting of any
source task data at that domain point.

To formalize this intuition, we take the average (over all words in the
curriculum) di�erence between source and target task covariances of the
instance word and each other word, giving a measure of how similarly in-
stance word data impacts inference overall in the source and target tasks.
Transfer weight, λi, of a source task data instance {xi,yi} is determined by
the average di�erence in source and target task covariance at that point,
across all words w in the Curriculum,W.

λi =

∑
w∈W 1− ||Covs(xi,w) −Covt(xi,w)||

|W|
. (5)

A transfer coe�cient of 1 indicates ‘perfect’ transfer, i.e., that instance
word conveys the same information in both source and target tasks, whereas
a transfer coe�cient of 0 indicates that the source and target task are unin-
formative to each other, with respect to that instance word. To avoid undue
complications in evaluating this method, we reweight data instances only
once in our evaluations, from the originating source task to the target task.
If the model switches tasks multiple times, previously transferred data is not
re-weighted and re-transferred back to the original source-task model.

By design, the range of possible training data scores lies within [-1, 1],
which, in addition to providing a natural interpretation of scores as ‘mastery’,
also simpli�es the instance-weighting transfer procedure. Because positive
values are interpreted as positive mastery and negative values as lack of mas-
tery, multiplying by the (positive) transfer coe�cient λ can never change the
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Figure 9: Instance-weighted transfer learning in theoretically ideal case of ’perfect’
transfer (green) and under more realistic conditions (red).

sign of a training instance, i.e., a negative demonstration in WordDecoder
remains a negative demonstration in WordBuilder.

4.2.1 Non-overlapping Curriculum Transfer

As discussed in Section 3.1.2, WordBuilder and WordDecoder draw their
content from two separate Curriculums, hence the input spaces of their
respective data instances do not exactly match. In this section, we present an
expansion of the prior instance-weighting method that extends to ‘partially
heterogeneous’ transfer scenarios in which the source and target tasks’ input
domain are not fully shared and have task-speci�c domains. Despite this
challenge, our method still allows for instances of all source task words to be
usefully transferred to the target task and vice versa.

Without loss of generality, we walk through the method on one-way
transfer, from a single source task to a single target task (the actual game
order doesn’t matter). Each word in the source and target tasks’ Curriculum
can be labeled as belonging to one of 3 sets: S, words that only appear in
the source task, O, overlapping words that appear in both, and T , words
that appear only in the target task. The Curriculum for the source task,
therefore, is O∪ S and the Curriculum for the target task is O∪ T .

Unifying the two partially overlapping domains, we construct a new
“joint curriculum", composed of S∪O∪ T . Over the joint curriculum, we re-
compute the task-speci�c covariances between all words, leveraging the fact
that the domain of the covariance functions is over words for which we can
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compute both semantic vector representations and orthographic Levenshtein
distance (see Section 4.1.3), a vastly larger set of words.

Then, we transfer as before, computing the transfer coe�cient as the
average di�erence in task covariance between the instance word and every
other word in the joint curriculum, re-wighting the source instance by the
coe�cient, and incorporating the reweighted sample into the training data
of the target task GP.

The generalization of this method introduces some new details. For in-
stance, we call O∪ T the ‘core curriculum’ because it represents the set of
words upon which the target task will be evaluated: just the words that ap-
pear in the Target task game. Transferred source task instances in O change
the model estimates directly as an observation for a speci�c word in the
core curriculum, just as if they had been directly observed in the target task.
Transferred source task instances in S are not part of the core curriculum, but
still impact the model indirectly through their impact on posterior estimates
of core curriculum words.

In essence, this method reduces the partially heterogeneous case to the
homogeneous case, at the cost of some data (in S) having a less direct impact
on the target task model, further underscoring the �exibility and extensibility
of the word-space representation for adaptive cognitive modeling.

4.2.2 Improving nonstationary GP modeling via Continual Active Training

Data Management

In this thesis, I extend multitask personalization to ‘lifelong personalization’
by bringing transferrable personalized models to nonstationary domains.
This is primarily accomplished via a novel extension to the Gaussian Pro-
cess modeling framework described thus far. In prior work (Spaulding et al.
[2021b, 2018]), I noted that Gaussian Processes do not naturally have a sense
of temporal data - if the model receives training points of (0,1) and (0,-1),
the mean posterior prediction is indeed (0,0). But, counter to the intuitive
interpretation of variance as uncertainty, the posterior distribution at 0 is
not a high variance Gaussian (indicating a newly uncertain prediction), but
rather a low-variance Gaussian (indicating certainty that the ‘true’ value
lies in between the observed data points). Unlike other uncertainty-based
estimation methods (e.g., Kalman �lters) in which uncertainty is updated
over time, Gaussian Processes lack a mechanism for increasing uncertainty
around previously observed training data. The proposed solution, aimed
at adapting Gaussian Processes to lifelong learning scenarios, is an active
‘learning’ protocol we call ‘continual active training data management’, or
CATDaM.

In its simplest formulation, CATDaM consists of a data structure that
organizes the observed training data temporally, and an active learning
algorithm that marks ‘stale’ data points and removes them from the active
training set. Much as the active learning method used by the ContentModel
(described in Sec. 3.1.3) is closely tied to the tutoring agent’s choice to observe
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a student response, the active removal of training data followed by CATDaM
is closely tied to the tutoring agent’s demonstrations.

Demonstrations by the tutoring agent represent the most direct oppor-
tunity for the agent to in�uence student learning, by providing the correct
response to a prompt word (as a player) and explaining out loud its reasoning
to the student. As described in Sec. 3.1.3, the agent’s decision to give a demon-
stration and the Curriculum word demonstrated are, in fact, coordinated by
the StrategyModel, the ContentModel, and the CognitiveModel. The
decision to take the DEMONSTRATE strategy action comes �rst, and then the
ContentModel selects the word which the CognitiveModel is most con-
�dent the student has not mastered (i.e. has a negative posterior prediction
for mastery).

A demonstration represents important contextual information for
CATDaM! It signals that a student’s mastery with respect to that domain
point (i.e their mastery of the demonstrated word) may have shifted, and
that prior observations of student performance may no longer re�ect their
current mastery. In order to address this potential distribution shift in stu-
dent mastery, CATDaM marks prior observations of student response to that
target word in the memory data structure and removes them from the active
training set. Not only does the CATDaM protocol remove training data that
may no longer re�ect the current ‘distribution’, but it also has the additional
advantage of directly increasing model uncertainty at the demonstrated do-
main point, signaling to the ContentModel that it is a good candidate for
observing student performance at a future opportunity.

To make this more concrete, imagine a scenario in which the tutoring agent
OBSERVE’s a student incorrectly decoding the word "DOG" in the �rst round.
The GP posterior updates with a lower estimate of decoding mastery for
"DOG". In a subsequent round, the StrategyModel tells the tutoring agent to
take the DEMONSTRATE strategy action, and because the CognitiveModel
is con�dent the student has not mastered "DOG", the ContentModel selects
it for demonstration. After the robot gives a demonstration of the correct
decoding to the student, CATDaM looks back through this student’s play
history and removes prior observations of their decoding mastery for "DOG".
Because the robot’s latest demonstration may have substantially shifted stu-
dent mastery, CATDaM assumes that these prior observations no longer
re�ect the best estimate of their future ability. The CognitiveModel is re-
trained, and the subsequent posterior estimate is now more uncertain about
the student’s ability to decode "DOG" (though other word decoding observa-
tions, – "LOG", "FROG", etc. – still in�uence this posterior estimate). Because
the uncertainty surrounding this estimate is now boosted, "DOG" once again
becomes a good candidate for selection by the the ContentModel, when
the StrategyModel tells the tutoring agent to take the OBSERVE strategy.
This dynamic of a tutoring agent’s OBSERVE-DEMONSTRATE-OBSERVE
behavior pattern is key to e�ective tutoring and arises naturally from the in-
terplay between the ContentModel, StrategyModel, CognitiveModel,
and CATDaM.
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G A U S S I A N P R O C E S S E S I N S I M U L AT I O N

5.1 evaluating lifelong gaussian processes and multitask
transfer in simulation

Over the past year, I have conducted several simulation-based studies of
multitask and lifelong personalization, published in detail in Spaulding et al.
[2021b] and Spaulding et al. [2021a]. In this section I will brie�y report on
the results of these studies, evaluating the e�ect of adding CATDaM to a
CognitiveModel in simulation experiments with model students.

Although uncommon, it is by no means a new idea within HRI to simulate
human data to evaluate robot behavior, models or algorithms under gentler
(and more repeatable) conditions. The bene�ts of this practice are most clearly
articulated in a paper that describes the “Oz of Wizard" paradigm, inverting
the better-known “Wizard of Oz" paradigm in which real humans interact
with a robot whose behavior is actually produced by a human (Steinfeld et al.
[2009]). Under the Oz of Wizard paradigm, real robot behavior is evaluated
against humans whose behavior is actually produced by a computer, i.e. simu-

lations of human behavior. “Oz of Wizard" experiments involving ‘simulated’
students are rarely publicized, despite the widespread use of simulators in
other areas of robotics (e.g., Sim2Real motion planning or task learning).
In part this is because real student behavior is not easy to simulate. Real
students act unpredictably, capriciously, and in ways that even the students
themselves struggle to articulate.

In many �elds of engineering where the ‘actual’ live test of a system is
expensive, overly time-consuming, or carries substantial risk, simulation
studies are considered de rigeur. Despite a simulation �delity gap larger
than many physical environment simulations, I argue that simulated student
evaluations can advance research in long-term human-robot interactions by
providing a more principled starting point for systems prior to conducting
long-term in-person studies. For instance, studies on simulated student data
can con�rm that modeling algorithms perform as expected on simpli�ed
data distributions. Simulated student data can also help algorithm designers
tune hyperparameters to useful values or establish reasonable performance
baselines without having to conduct pilot tests on live students. Simulation
studies can also allow for many di�erent comparisons to be made in parallel,
whereas human-subjects studies are more typically tightly controlled owing
to the generally small number of participants, which has the unfortunate side
e�ect of limiting the number of hypotheses that can be evaluated. We believe
that the use of simulated student tests should not be considered a substitute

for an in-person evaluation, but rather an important and insightful part
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of the system implementation and preparation before a study of in-person
long-term interaction is launched.

In a 2021 review published in the Proceedings of the National Academy of
Sciences, roboticists highlighted HRI as an area where simulation has great
potential, but also faces many challenges.

Development of simulation tools that better represent the psycho-
social nature of HRI and enable a common operating ‘picture’
of possible solution sets for decision making may ... establish
a baseline for more e�ective collaboration.....Creating [simu-
lated human] avatars is as di�cult as humans are diverse, each
person a unique and complex web of intertwined physical, so-
cial, emotional, cognitive, and psychological threads....Numerous
questions remain unanswered in relation to abstracting in math-
ematical models the psychological underpinnings that trigger in
humans states of anxiety, fear, comfort, stress, etc. In this context,
the ability to control and display emotions in [simulated human]
avatars represents a prerequisite for endowing smart robots with
a sense of empathy in their interaction with humans. (Choi et al.
[2021])

5.1.1 Simulated Students: pre-study evaluation for long-term HRI systems

In this section I describe simulated student performance data, used to analyze
the e�ects of multitask personalization through cross-task model transfer and
‘lifelong personalization’ extensions via CATDaM. In subsequent sections I
outline implementations of two classes of simulated ‘students’ (referred to as
‘simple’ and ‘dynamic’ SimStudent s), describe the theoretical assumptions onSimStudent

which these simulations are based, and discuss the implications of subsequent
simulation experiments. These simulation studies were conducted when the
WordDecoder game was called RhymeRacer and had a slightly di�erent
task design, asking students to select a Target word that rhymed with a
Prompt word shown at the start of each round (see Section 3.1.2.3).

Each SimStudent has an internal "true mastery" (mw ∈ [−1, 1]) for each
word in the Curriculum, per game. The SimStudent’s true mastery of a
word in a game can be interpreted as the student’s likelihood of correctly
applying the literacy skill to the word (e.g. identify "SNAIL" as the rhyme
for "WHALE" or correctly spell "SNAIL" with the letter blocks). The process
for generating true mastery values varies by game, and is used to simulate
a student’s gameplay actions data during the game via a noisy sampling
process.

Each SimStudent’s “performance data” for a word consists of a binary
‘correctness’ variable corresponding to whether they successfully applied
the primary literacy skill of the game to the word (e.g., selected the correct
rhyme or correctly spelled the Target word), plus a scalar ‘timing’ variable
corresponding to the amount of (simulated) time taken to answer. Each
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word-performance pair (wordi, {correcti, timingi}) constitutes a single
‘sample’.

5.1.1.1 Simulating True Mastery

Although each game supports the practice of di�erent fundamental literacy
skills (rhyming and spelling), both skills are indicators of a meta-linguistic
skillset known as phonological awareness. To generate the SimStudent’s true
mastery of each word in each game, we �rst generate a theoretical “phono-
logical" mastery for each of the 39 ARPAbet phonemes (Hixon et al. [2011]),
uniformly at random (mp ∈ [−1, 1]). The phonological mastery that underlies phonological mastery

the word mastery of both games is an implicit modeling assumption, based word mastery

on decades of research in early childhood literacy development, that there
exists a link between a student’s rhyming and spelling ability with respect to
speci�c words and phonemes (Høien et al. [1995]). Each phonological mastery
is initialized uniformly at random in the range [0− 1]. After initialization,
these phonological mastery values are then further transformed to derive
the mastery of each Curriculum word in each game. For RhymeRacer, the
mastery of the phonemes that comprise each rhyme-ending (e.g. ‘AY’-‘N’ for
‘RAIN’ , ‘BRAIN’, and ‘TRAIN’) are averaged, and Gaussian noise (centered
on the phoneme-mastery average, σ = .1) is independently added to compute
the SimStudent’s true mastery of each word with that rhyme-ending. For
WordBuilder, the phonological mastery of all phonemes that constitute a
word are averaged to give the SimStudent’s true mastery of that word.

5.1.1.2 Simulating Performance Data from Mastery

The ‘correctness’ component of student performance is determined by
whether the student’s true mastery of that word is greater or less than 0
(corresponding to correct/incorrect). However, the value of this component
is randomly �ipped at a rate equal to ‘guess’ and ‘slip’ binomial variables.
‘Guess’ and ‘slip’ parameters are common formulations in educational stu-
dent modeling research (Baker et al. [2008]), which we use here to make
our simulated student data more realistic. Respectively, guess and slip pa-
rameters correspond to the probability of correctly answering a question
without true mastery or incorrectly answering a question despite true mas-
tery. For RhymeRacer, we set guess and slip rates at .25 and .1, based on the
multiple-choice nature of the round gameplay. For WordBuilder, due to a
game design less conducive to successful guessing, the guess and slip rates
are set at .1 and .1. These values fall within the range of empirically observed
rates of student ‘guess’ and ‘slip’ behaviors.

The ‘timing’ component of student performance is determined by the
numerical value of the SimStudent’s true mastery, mixed with Gaussian
noise. For these experiments, we capped the maximum timing at 10s. The
student’s true mastery score is binned into deciles, and the �nal score is
calculated by sampling from a Gaussian centered on 10−MasteryDecile,
so that lower levels of mastery correspond to longer timing components.
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5.1.1.3 Dynamic Students

The dynamic SimStudent largely keeps the same implementation as the
simple SimStudent, and extends it by adding a learning rate, r, and a learn-

ing gain parameter, g. Whenever the tutoring agent gives a demonstration,
the learning rate parameter determines the probability that the student’s
mastery increases, simulating student learning. The magnitude of the score
rise in the student’s underlying word mastery is set by the learning gain
parameter (word mastery is capped at 1, and further student learning from
tutor demonstrations has no e�ect). In the experiments reported here, the
learning rate was set to .66 and the learning gain was set to .50 (so if mastery
were at its lowest possible value, two successful lessons would be su�cient
to boost mastery to halfway, and 4 successful lessons would boost mastery
to its highest value). Other than the probabilistic shift in word mastery in
response to tutor demonstrations, the dynamic SimStudent’s word mastery
and performance data are simulated identically to the simple SimStudent.

5.1.2 Inferring and Evaluating Models of Simulated Students

In our simulation experiments, we create a new SimStudent with a distinct,
simulated ‘true mastery’ of each word in the curriculum per game. Each
Gaussian Process CognitiveModel then has the task of recreating or esti-
mating the true mastery from the derived SimStudent game performance
data.

From the perspective of a simulation experiment, the underlying domain
information (e.g., rhyme-ending equivalence or Levenshtein distance) is
encoded in both the CognitiveModel covariance and the sampling process
used to generate the SimStudent’s ‘true mastery’. The true mastery data is
further transformed by an unknown (from the perspective of the GP student
model), noisy process into student performance data, and the ‘task’ of the
CognitiveModel is to estimate the most likely true mastery distribution.

The primary questions we were interested in answering with this work
were fundamental measures of transfer learning systems: viability, pro�ciency,
and e�ciency. In other words, (1) Viability: does incorporating source task
data improve target task performance at all, or do we �nd that source task
data is worse than no data, i.e., negative transfer? (2) Pro�ciency: Does a
target task model trained on source and target task data perform better than a
target task model trained on the same amount of total data, exclusively from
the target task? (3) E�ciency: Does a target task model trained on source
and target task data perform better than a target task model trained on the
same amount of target task data only?

These questions represent the fundamental measures of success for multi-
task personalization. So-called ‘negative transfer’ occurs when a target tasknegative transfer

model trained with a mix of source and target task data performs worse than
a target task model trained with just the subset of target task data, implying
that training on source task data is worse than no data and therefore transfer
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Human-centered Hypotheses

1 Viability: (Are the tasks compatible enough to avoid negative transfer?).
2 Pro�ciency: (Does transfer improve the performance of the �nal

model?).
3 E�ciency: (Does transfer improve model performance during train-

ing?).

learning is not viable. A more pro�cient multi-task model supports the idea
that diverse sources of data could lead to models that perform better overall
in a complex target task. Finally, in data-sparse domains such as personalized
human-robot interaction, more e�cient learning implies that multi-task
personalization helps overcome some challenges of long-term, personalized
agent interaction. Despite their essential simplicity, no student modeling
system, to our knowledge, has yet answered these questions.

In these simulation studies, we used the F-1 classi�cation score, which F-1 classi�cation

scorecombines precision and recall, as our primary model evaluation metric. The
classi�cation task is whether the model correctly predicts the sign (i.e. positive
or negative) of the SimStudent’s true word mastery. While this may seem a
coarse metric for simulated study — we could, for instance, look at L1 or L2
regression loss — the sign of the word mastery is the primary determinant of
the correctness of the student’s response (guesses and slips notwithstanding).
In a study with real students, we do not have access to a numerical form of a
student’s ‘true’ mastery; student models are evaluated based on their ability
to predict student’s actual response behaviors. Therefore, in the spirit of
keeping our simulation as close as possible to human subject study, we focus
our evaluation on the same metric: binary classi�cation of student mastery
with respect to individual curricular components.

Each �gure below shows the results of the average of 20 “rollouts" of
60 ‘samples’ for each of three classes of model: RhymeRacer single task,
WordBuilder single task, and a transfer model (color shading indicates
standard error of the mean). At the start of each rollout, a new SimStudent
(with newly randomized word mastery) is created to represent a unique
student. Each rollout consisted of 60 samples, intended to mirror the structure
of many common studies of long-term interactions – 4 interaction ‘sessions’
each of which provided 15 useful samples (roughly in line with the actual
number of samples collected in live human-robot experiments reported in
Spaulding and Breazeal [2019]). Within each rollout, the transfer model
alternates tasks at the start of each ‘session’, i.e. after 15, 30, and 45 samples
respectively. Within each rollout, ‘samples’ represent opportunities for the
tutoring agent to OBSERVE students mastery via game performance.

In live gameplay, the StrategyModel determines whether the tutoring
agent DEMONSTRATEs or OBSERVEs. For our simulation study, we adopted
a simple rule-based StrategyModel: the robot chooses to DEMONSTRATE
after a �xed number of samples and OBSERVE otherwise. In the case of a
typical 60 sample rollout, the tutoring agent DEMONSTRATES twice after
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Figure 10: Visual depiction of training data for single- and multi-task student models.
Blue and Yellow rectangles and circles indicate models and data instances
from RhymeRacer and WordBuilder. Red rings indicate data has been
re-weighted from its originating source task to a new target task

every 3 samples it OBSERVEs, starting after the �rst 9 samples. So in a 60
sample rollout, the student receives 34 ‘demonstrations’ from the robot (not
all of which result in successful learning), 2 each after 9,12,15... samples. In
live gameplay, the StrategyModel determines whether the tutoring agent
DEMONSTRATEs or OBSERVEs. For this simulation study, I adopted a simple
rule-based StrategyModel: the robot chooses to DEMONSTRATE after a
�xed number of samples and OBSERVE otherwise. In the case of a typical
60 sample rollout, the tutoring agent DEMONSTRATES twice after every 3
samples it OBSERVEs, starting after the �rst 9 samples. So in a 60 sample
rollout, the student receives 34 ‘demonstrations’ from the robot (not all of
which result in successful learning), 2 each after 9,12,15... samples. Figure 10
shows the structure of the training data for each class of model graphically.

Throughout these simulation experiments, we strove to explore test sce-
narios that mimic realistic operating conditions as closely as possible. In
prior work, collecting even 20 good samples from a young student during a
single interaction session was considered highly successful Spaulding et al.
[2018]. In fact, the relatively low number of personalized data samples in real-
world HRI deployments was a major impetus for our investigation of transfer
learning for multitask personalization. Our simulations are computationally
e�cient enough to support real-time interaction. The average run-time for a
complete simulation of 30 rollouts for 3 models (2 single-task, 1 multi-task),
each with 60 samples was 210 seconds on a 2017 Macbook Pro computer with
a 2.9 GHz Quad-Core Intel Core i7 processor.
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5.2 gp simulation results and discussion for future re-
search

5.2.1 Multitask Personalization with Stationary Students

The results in this section were previously reported in (Spaulding et al. [2021b]
and Spaulding et al. [2021a]). Here, we give further context for these results
and provide new supporting evidence to support their conclusions, showing
that the e�ect persists even when the task order is reversed.

Figure 11 shows the results of the rollouts when RhymeRacer is the start-
ing task, though the same trend holds when task order is switched.

Both single-task models learn good representations of their respective
game tasks over 60 samples, consistent with prior experimental results
(Spaulding and Breazeal [2019]), suggesting that our simulation settings
are reasonably implemented, giving con�dence in further results not yet
evaluated in an experimental setting with human students.

The transfer model data is depicted in two separate representations, each
of which is better suited to answering di�erent questions. The ‘continuous’
representation (left) shows the transfer model data as a single rollout of 60
samples, with each session segment colored to show transfer. This represen-
tation is best suited for exploring questions of �nal pro�ciency – how well do
transfer models trained on a mix of source and target task data compare to
single-task models trained on the same amount of data exclusively from the
target task? The ‘discontinuous’ representation (right, both �gures) shows the
transfer model data split into discrete session segments, with their position
on the x-axis determined by the amount of target task data. This representa-
tion is best suited for exploring questions of model e�ciency – how well do
transfer models trained on a mix of source and target task data compare to
single-task models trained on the same amount of data exclusively from the
target task?

Figure 11 shows that initial transfer from RhymeRacer to WordBuilder
is substantial and positive, and that a WordBuilder model trained on prior
data from RhymeRacer outperforms a single-task WordBuilder model, par-
ticularly during crucial early interaction rounds. Figure 12 shows that the
e�ect remains consistent when the task order is reversed (i.e. when the task
sequence starts with WordBuilder). In this case, we can see that transfer
from WordBuilder to RhymeRacer boosts initial performance, but that sub-
sequent transfer e�ects are less impactful as more target task data is gathered,
suggesting that the bene�ts of task transfer may not be symmetric (i.e., the
bene�t of transferring RhymeRacer data to WordBuilder may not be equal
to the bene�t of transferring data from WordBuilder to RhymeRacer).

Overall, these results from the simpli�ed simulation environment paint
a compelling enough picture to merit further investigation of multitask
personalization in the nonstationary setting. Positive transfer is evident in
both directions, and there is strong evidence that multi-task personalization
is most impactful in crucial early phases of an interaction, before a model
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Figure 11: Simple ‘Pro�ciency’ and ‘E�ciency’ evaluation of multi-task vs. single-
task personalized models when RhymeRacer is the �rst task. The transfer
model trades o� �nal classi�er accuracy for multi-task generality and
meets or exceeds single-task model performance with equal amounts of
target task data

Figure 12: Simple ‘Pro�ciency’ and ‘E�ciency’ evaluation of multi-task vs. single-task personalized
models when WordBuilder is the �rst task. The general trend is consistent with the results
when RhymeRacer is �rst, indicating that the results are stable independent of task order

has an opportunity to acquire signi�cant target-task training data. In short,
simulation experiments with stationary students indicate that multitask
personalization can improve the e�ciency of target task model learning, and
that this e�ect is most pronounced within the �rst few samples collected
during an interaction. This is a critical step towards reducing the problem of
cold-start learning in interactive machine learning.

5.2.2 Lifelong Personalization with Dynamic Students: E�ects on Model Pro�-

ciency and Data E�ciency

Now we turn our attention to evaluating qualities of multitask personaliza-
tion in a more complex, nonstationary simulation scenario that incorporates
the e�ects of a tutoring agent’s actions on dynamic (i.e., learning) students.
In these evaluations, results for all models were derived over the same sim-
ulation timeline of 60 samples, even though in studies with real students,
there is often a trade-o� between opportunities for the tutoring agent to
respond (‘demonstrations’) and the student to respond (‘samples’). Because
we are primarily interested in understanding data and performance trade-o�s
between di�erent kinds of computational models, we chose to evaluate them
over consistent data sample timelines. Even though the models evaluated
with a dynamic student incorporate demonstrations and student learning
and models evaluated on static students do not, we evaluate them both with
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respect to the same 60 sample timeline. We also provide new results from
adding ‘continuous active training data management" (CATDaM) to the GP
CognitiveModel for ‘lifelong’ learning, and present evidence that including
CATDaM can improve both model performance and student learning in
nonstationary scenarios.

First, we show what happens when we apply the original, static Gaussian
Process model (without CATDaM) directly to a nonstationary simulation
with agent demonstrations and dynamic students.

Figure 13 compares static single-task and transfer models evaluated in two
di�erent scenarios. On the left, we have the same experimental conditions as
Figure 11, in which underlying student performance is derived from a static
SimStudent and there are no demonstrations to promote student learning.
On the right, the modeling GPs take the same modeling approach, but the
underling student performance data is derived from dynamic SimStudents.
Demonstrations from the tutoring agent slowly cause shifts in underlying
student mastery. This shows the expected performance gap from modeling a
dynamic target using a non-stationary modeling approach. Even under these
more challenging conditions, the GP modeling framework can still learn a
passable student model, but on the right, we see that the relative impact of
‘stale’ data and student mastery shift impede performance. Across all classes,
�nal model pro�ciency stabilizes at an F1-score of [.74-.79], compared to [.84-
.87] when modeling static students, a drop of 10 percentage points. The �nal
pro�ciency of the multitask model also declines across both tasks, though
the performance loss is less than in the single-task case. Despite this hit to
overall pro�ciency, the most notable trends of the multitask transfer model,
positive transfer and early-sample e�ciency gains, remain.

Figure 14 shows the bene�ts of incorporating continual active training data
management (CATDaM) into Gaussian Process student models, comparing
static single-task and transfer models (on the left) to lifelong (i.e. uses CAT-
DaM) single-task and transfer models on the right. For both classes of model,
underlying student performance is derived from a dynamic SimStudent that
receives demonstrations.

On the left, we see the same general performance trend as the right side
of Figure 13. The static GP model learns a decently performant model of the
dynamic student, but student learning causes both single-task and multitask
models to quickly hit a lower performance ceiling than in the static-student-
static-GP case. Without accounting for shift in dynamic student mastery, the
learning curve for static-GP models �attens and even declines slightly. On
the right, it continues to rise throughout the full 60 sample rollout, hitting
basically the same level of performance as the ‘static-student-static-GP’ case
from Figure 13.

To summarize these results: when we increase the complexity and realism
of the simulation environment by adding in a non-stationary SimStudent
and tutor demonstrations, stationary GP models perform about 8-10 per-
centage points worse (10-15%). Augmenting the GP model with CATDaM
helps the Gaussian Process to better model the non-stationary e�ects of
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Figure 13: Static-model-static-student performance results(left) vs. static-model-
dynamic-student performance results (right). Static models can learn
a decent model but su�er a drop in �nal pro�ciency. E�ciency bene�ts
of multitask model are undiminished.

tutor demonstrations, and performance performs as well as in a more com-
plex, nonstationary environment as a stationary model does in a stationary
environment.

And, while non-stationarity lowers the �nal pro�ciency of static GP models,
it does not appear to materially impact the e�ciency results from multitask
transfer. Nor are e�ciency results clearly impacted when GP model pro�-
ciency rises as a result of incorporating CATDaM. This result indicates that
the e�ciency bene�ts of a multitask personalization approach are indepen-
dent of the pro�ciency bene�ts of a continual learning approach.

5.2.3 GP Modeling of Dynamic Students: E�ects on Student Learning

In addition to enabling more sophisticated evaluation of pro�ciency and
e�ciency of personalized model learning, by integrating tutoring agent
actions and dynamic student learning into our simulation experiments, we
can also study the e�ect of CATDaM on student learning, the increase in
mastery due to the tutoring agent demonstrations. We quantify these results
by calculating the number of ‘newly mastered’ words (mastery went from
negative to positive) for each model type over rollouts guided by both static
and dynamic GPs. Figure 15 shows that SimStudents in the dynamic GP
case learned 5 more words on average, compared to students in the static
GP rollouts. We hypothesize this result is due to the dynamic GP picking
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Figure 14: Static-model-dynamic-student performance results(left) vs. dynamic-
model-dynamic-student performance results (right). Adding CATDaM
to GP models improves modeling performance in nonstationary environ-
ments, while preserving e�ciency bene�ts of multitask personalization.

Figure 15: Student learning gains under static-model-dynamic-student (left) and
dynamic-model-dynamic-student (right) simulations. Students tutored by
a dynamic GP model mastered nearly 50% more words.

‘better’ words to demonstrate, on account of a more up-to-date estimate of
word uncertainty enabled by CATDaM.

5.2.4 Discussion of simulation results

Throughout these experiments, we strove to carefully contextualize the re-
sults as supporting evidence in support of future in-person studies with
human students. There is truly no substitute for actual human experimental
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data. At the same time, we think that these results provide con�dence to pro-
ceed with live student studies, and are demonstrative of the kinds of bene�ts
for long-term HRI that can come from simulation analysis. In advocating
for researchers to evaluate their systems in the real world, Rodney Brooks
famously quipped “simulations are doomed to succeed" (Brooks and Mataric
[1993]). We �nd this philosophy generally laudable, if not always practical.
Simulated human data has an accepted role in Human-Robot and Human-
Agent Interaction research (with notable examples in human-interactive
machine learning systems) (Gri�th et al. [2013]). While this project meets
the criteria for such a design, we wish to state that this project constitutes
an evaluation of the proposed transfer method, it is not a de�nitive eval-
uation. Further research with human subjects will be necessary, not least,
because one of the major hypothesized bene�ts of the multi-task personal-
ization paradigm – increased student engagement – could not be realistically
evaluated by simulation experiments.

Extending our evaluation of multitask learning to more realistic non-
stationary domains lends further con�dence that simulation results will
extend to live long-term studies with students, but the addition of robot ac-
tions (demonstrations/observations) and stochastic student learning updates
also allow us to analyze estimated student learning gains in simulation. We
found that in simulated interaction with a tutoring agent using a CATDaM-
enabled model leads to a simulated learning gain of almost 50% more new
words mastered, compared to an agent using a static CognitiveModel. These
results are consistent over both single-task and multi-task models, and are
robust to task order in the multitask case.

We also �nd evidence that the extension of our modeling approach to
nonstationary domains does not substantially alter the positive transfer
bene�ts of data e�ciency and cold-start avoidance previously observed in
evaluating multitask personalization. In other words, adopting a continual
learning approach appears to be complementary to a multitask personalization
approach. Finally, we show that adopting a continual learning approach to
dynamic student modeling also has bene�ts for student learning in addition
to model learning.

These simulation results highlight a number of hypotheses of particular
interest (based on the observed e�ects in simulation) for further evaluation
via human subjects study.

First, is transfer symmetric? In simulation, we observed that the bene�t
of transferring RhymeRacer data to WordBuilder may not be equal to the
bene�t of transferring data from WordBuilder to RhymeRacer. Second,
how meaningful is the e�ect of CATDaM on student word learning? Figure
15 showed a substantial di�erence in student word learning in simulation, but
student learning is quite di�cult to accurately model in simulation. Finally,
does CATDaM improve overall model performance without changing the
impact of model transfer? In discussion with other researchers, we agreed
this would be a fantastic main result. But is this result merely an artifact of
favorable simulation design? I.e. was this work “doomed to success"?
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One of the primary bene�ts of simulation study prior to human subjects
work is that it can highlight particular research questions for emphasis. In
planning the work presented in the next chapter, we made design tweaks to
insure we could appropriately answer these three questions in the course of
the human subjects study.





6
L I F E L O N G P E R S O N A L I Z AT I O N : S T U D E N T A N D M O D E L
L E A R N I N G I N H U M A N S U B J E C T S

6.1 human subject study design

Prior simulation results suggest that combining multitask personalization
and continual learning into a ‘lifelong personalization’ approach appears
to bene�t both the data e�ciency of model learning, the �nal pro�ciency
of learned student models, and the amount of student learning gain. The
simulation experiments provide useful insight as technical validation in
advance of a long-term in-person study, and have also proven useful in
discussions with schools and other institutional partners in preparation for
research engagement as a scienti�c partner in long-term HRI research.

These results from simulation bring us one step closer, providing com-
pelling evidence that combining continual learning and multitask personaliza-
tion can be a successful path towards truly lifelong personalized companions,
though more research is needed to con�rm these e�ects in studies with real
students.

In order to con�rm these results, I conducted a human subjects study to
evaluate the multitask personalization approach and the uni�ed system. Due
to the uncertainty of the ongoing COVID-19 pandemic which restricted us
from using elementary school-age early readers as participants, I redesigned
the games for a human subjects evaluation with MIT undergraduates, chang-
ing the task context to second-language learning, but with a similar focus on
literacy skills. Changing our study population provided more reliable schedul-
ing and participant count, but also posed new operational challenges for task
and experiment design (see Section 3.1.2.1 for task translation details).

6.2 primary research qestions

The main research goals of this study are the same as those explored in
the simulation experiments: (1) determining the core viability of multitask
personalization via student model transfer (i.e. is positive transfer possible?),
(2) studying the impact of multitask personalization on the e�ciency and
pro�ciency of learned personalized models, and (3) studying the impact
of combining continual learning methods (in the form of CATDaM) with
multitask personalization.

In addition to these system-centric (i.e. algorithmic) research questions, we
also propose to explore human-centric research questions: (1) How does stu-
dent engagement change over the course of a long-term study with multitask
personalization? (2) How do multitask personalization and lifelong personal-

69
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ization a�ect student learning (as measured by posttest and within-session
assessment data)?

Computational Hypotheses

C1 Lifelong Personalization does not reduce model performance with
equivalent data (No Negative Transfer).
C2 Lifelong Personalization helps models achieve better performance

with less data (E�ciency E�ect).
C3 Lifelong Personalization improves �nal model performance (Pro�-
ciency E�ect).
C4 Continual Learning improves model performance (Continual Ef-
fect).

Human-centered Hypotheses

H1 Student engagement is a�ected by Personalization condition (En-
gagement E�ect).
H2 Student posttest learning is a�ected by Personalization condition

(Student Posttest E�ect).
H3 Student assessment learning is a�ected by Personalization condi-

tion (Student Assessment E�ect).

In advance of data collection, I pre-registered the study plan on AsPredicted,
a platform that allows researches to commit to investigating speci�c research
questions a priori rather than generating ‘hypotheses’ after the results are
known. Hypotheses C1, C2, C3, and C4 were included in the pre-registration
form.

6.3 study schedule and experimental design

6.3.1 Experimental Conditions

I conducted a 4-session study, with a total of 72 participants random-
ized to be in 1 of 4 conditions. Each participant experienced both games
(WordDecoder and WordBuilder) in an alternating sequence. Participants
in Conditions A (n=19) and B (n=19) played the game with a robotic agent
that personalizes using both multitask and continual learning (CATDaM),
they di�er in the order in which the games are played (see Figure 16). In
Condition C (n=17), participants interacted with a robot using multitask
personalization, but not continual learning (i.e. data is transferred across
tasks, but CATDaM does not actively prune stale training data). Condition
D (n=17) is a control condition in which students interact with the robot,
without either multitask personalization or CATDaM. In other words, per-
sonalization only happens within each session, and the data is not used to
personalize subsequent sessions at all.
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Figure 16: 4 session timeline of games, each played 2 times. Each session consists of
an Interaction Phase and an Assessment Phase. Letter, word, and engage-
ment post-test assessments followed the �nal session.

Comparing conditions A and B allows us to evaluate the e�ect of multitask
personalization by comparing average model performance from each game
at di�erent levels of personalization (‘No prior personalization’, ‘L1’ Source-
task transfer, ‘L2’ Source-task transfer and Target-task data, etc.), providing
an answer to C1. For example, we can compare the Condition A model
accuracy on WordDecoder (Session 1, with no prior personalization) to
the Condition B model accuracy on WordDecoder (Session 2, with only
WordBuilder data transferred in), to isolate the e�ect of multitask transfer
on model performance at di�erent checkpoints (see Figure 22).

Comparing conditions A and C allows us to isolate the e�ect of continual
learning by comparing average model performance and student learning
across conditions. Comparing Conditions A and D (and C and D) allows us to
isolate the e�ects of lifelong personalization and multitask transfer compared
to a common baseline of students who interact with a robot that adaptively
personalizes only within single sessions.

6.3.2 Study Protocol

6.3.2.1 Participant Recruitment

We recruited 84 undergraduate and graduate students from MIT dorm mailing
lists. These subject enrollment numbers align with our previous experience
conducting similar sized studies, as well as with an independent power
analysis based on estimated e�ect sizes and variation (Figure 17). Participants
were compensated $25 for completing the study. Participants were excluded
from the study if they had any prior experience studying Russian or more
than incidental exposure to Russian.
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Figure 17: Independent study power analysis to determine minimum condition sam-
ple size

6.3.2.2 Procedure

Over the course of the study, each participant visited the lab twice within
one week and during each visit engaged in two gameplay sessions with Jibo.
During participants’ �rst visit they were introduced to the robot and given
a tutorial on how to play the games. After the �nal session, participants
completed three post-test assessments: a word posttest, a letter posttest, and
a survey task to report their self-assessed engagement.

Each experimental session took approximately 15 minutes to complete,
with 10 minutes (15 student responses) dedicated to fully interactive game-
play and 5 minutes (10 student responses) dedicated to an ‘assessment’ phase.
During the Interaction Phase, the robot played a fully active role in the game,Interaction Phase

selecting words and giving feedback to the child. During theAssessment Phase,Assessment Phase

the robot is a silent partner who does not comment. The ContentModel is
also deactivated during the Assessment Phase and words are selected ran-
domly from the Curriculum. Finally, the tablet does not provide the usual
reinforcement signs of correct and incorrect answers. The Assessment Phase
is primarily used as a way to collect session-level ‘ground truth’ against
which we can compare model predictions as well as session-level indicators
of student learning.

6.3.2.3 Dependent Measures

participant performance data When the robot agent’s
StrategyModel selects the OBSERVE objective, students have an op-
portunity to demonstrate their knowledge by providing an answer in
the game. Students’ responses were logged during all gameplay sessions.
Computational model performance was assessed by the accuracy of
predictions of future student responses (see Section 6.4). Student response
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Figure 18: GoPro camera view for human subjects study. Setup includes front-
facing camera within Station, microphones inside Jibo robot, Android
tablet screen-recording, and a GoPro camera.

accuracy during the Assessment Phase was also used to assess student
learning over time.

letter learning posttest After completing the �nal session, par-
ticipants completed a worksheet showing each of the 31 letters used in the
study, on which students were asked to “mark the letter or letters in English
that best match the sound this Russian letter makes". Student responses were
manually scored by the experimenters. Originally, students completed this
worksheet as both a pre-test and a post-test (in order to compute normalized
learning game and counter-balance experimental conditions), but we discon-
tinued the pre-test component after approximately a dozen participants due
to every participant claiming they had no prior experience with Russian and
would have merely guessed at each letter on the pre-test.

word learning posttest After completing the �nal session and the
letter posttest, participants completed a “word" posttest activity, a modi�ed
version of WordDecoder that shows the letters of fully translated Russian
words instead of English transliterations. The tablet pronounces each word
out loud, and students select one of four graphics indicating which word
they think the Russian word corresponds to. As in the Assessment Phase,
Jibo is a silent partner who does not play or move during this activity, words
are selected in sequence to cover the entire task Curriculum, and the tablet
does not provide overt indications of answer correctness. The posttest is
designed to assess students’ word learning, even though that is not the direct
focus of one of the game tasks.

engagement and feedback survey After completing the Word
Learning Posttest, participants �lled out a short four-question Likert survey
indicating the degree to which they agreed with statements regarding the
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e�ect of the game design and robot behaviors on learning and the degree to
which they felt engaged by each game.

6.4 data collection and analysis

We collected data from 84 participants, and ended up with 72 usable data
points. Participants were most commonly excluded from �nal analysis due
to technical di�culties or not returning for their second session.

For each participant, we recorded synchronized logs of their gameplay
activity, the robot’s actions, and front-facing camera footage. We also col-
lected non-synchronized over-shoulder GoPro camera footage (see Figure
18), a screen recording of the tablet game display, word and letter posttest
evaluations, and the engagement posttest survey.

evaluating student model accuracy: walk-forward evalu-
ation In the simulation studies published so far, we were able to di-
rectly compare the predictions of the trained personalized models against the
“ground truth" mastery of the simulated students. However, when evaluating
personalized models trained on real students, it is not possible to directly
compare against a student’s “ground truth" mastery. In the past, researchers
have typically adopted one of two approaches: conducting a comprehensive
assessment of each student using a validated assessment tool, or collecting
more interaction data from a �nal ‘post-test’ session to hold out as a test set.

To answer the most pressing research questions regarding lifelong per-
sonalization, we are not only interested in how well �nal models perform,
but also in the incremental performance of models at various, potentially
early, stages of training — as observed in simulation, bene�ts of personalized
task transfer seem most likely to be found in early stages of task modeling.
Collecting additional interaction data to use as a model test set would help
evaluate the �nal model pro�ciency, but would not be a valid set to compare
against earlier instantiations of the personalized models because this �nal
test set would re�ect a student’s �nal mastery distribution. Again, we run
into the challenges of a nonstationary “moving target" problem: the nonsta-
tionarity of students means the snapshot of student data observed in the �nal
sessions is not a good test candidate for early instances of the student model
(which might re�ect earlier distributions of student mastery). The highly
personalized nature of the student models also poses evaluation challenges,
invalidating other techniques such as ‘leave-one-out’ cross-validation.

Under these circumstances, the most sound approach to model evaluation
is a Walk-forward validation Stein [2002]. A walk-forward validation is awalk-forward

validation method for incremental model evaluation often used on time-series data, in
which a model is trained on all data prior to some checkpoint, and then tested
on a �xed-size window of data from after the training checkpoint. The results
are recorded, and the checkpoint moves forward in time, adding the previous
�xed-size test data to the training set, and testing on a new dataset of the
same size from beyond the updated checkpoint. Walk-forward validation is
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Figure 19: Visualization of Walk-forward Analysis procedure

common in �nancial analysis, especially for ‘backtesting’ active models on
non-stationary time-series data.

evaluating student learning: assessment phase accuracy
and posttest assessment While walk-forward analysis helps over-
come the primary practical challenge of evaluating di�erent personalized
models, evaluating student learning is relatively more straightforward. As
previously discussed, I conducted a posttest assessment of students’ letter
and word learning. Students �lled out a �ll-in-the-blank worksheet asking
them to write the letter(s) that corresponded to each of the 31 Russian let-
ters used across the games. They also played a matching game similar to
WordDecoder to assess their knowledge of the Russian translation of each
word in the Curriculum. These metrics provide a form of “summative as-

sessment" that attempts to directly assess letter and word knowledge through summative

assessmentcommon classroom formats .
The Assessment Phase provides a measure of student learning based di-

rectly on the students’ task performance, a type of stealth assessment. The stealth assessment

Target Words in the Assessment Phase are selected uniformly at random from
the Curriculum and the robot does not provide any assistance. Students’
response accuracy during this phase therefore represents a measure of task
pro�ciency i.e., how well a student is mastering the speci�c task (as opposed
to a broader assessment of the underlying literacy skills). The Assessment
Phase data is particularly important because it allows us to assess student
learning throughout the course of the study.

engagement survey After completing the word and letter posttests,
we asked students to complete a short Likert scale survey reporting their
engagement during each game and the degree to which they felt both the
game design and Jibo’s behaviors helped them learn. The survey was self-
administered through a Google Form interface, depicted in Figure 20.

6.5 results

In this section we report on the results of our human subjects study, and
provide commentary on the measurement and interpretation of the data, as
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Figure 20: Posttest Survey to gauge student engagement

well as the implications of the results for each of our Computational and
Human-centered hypotheses.

6.5.1 Model Learning Results

We start by comparing Model Accuracy results across conditions. Figure 21
shows a continuous representation of model accuracy, across each condition.
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Figure 21: Continuous representation of model accuracy at checkpoints for all con-
ditions. See Table 4 for precise numbers.

The Y-axis indicates the mean model accuracy (+/- standard error of the mean)
of the student model at each checkpoint, predicting over the checkpoint test
set whether a student’s response would be correct. The X-axis indicates total
number of ‘samples’ (i.e. student observations) that each model was trained
on (ranging from 5 to 90). Because of the walk-forward testing procedure,
the last session of each game has only 3 accuracy checkpoints (because the
last 10 data points are the �nal test set).

The continuous representation across conditions shows a pattern broadly
similar to the simulation results: within each session, model accuracy in-
creases, and at each task switch, model performance declines a small amount
before increasing again. The primary impact of this result is as an indication
that the model is capable of learning correctly, and that our simulation results
are at least directionally correct.

6.5.2 A-B Comparative Model Learning Results

Figure 22 shows a cross-condition comparison of model accuracy within
each task, comparing model performance within each game across Condition
A and B participants to isolate the e�ect of source-task transfer. Partici-
pants in Conditions A and B both interacted with a robot that personalized
using multitask transfer and continual learning data management. The dif-
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Figure 22: A-B Cross-condition Results. Transfer has a strong positive e�ect on
model accuracy in WordDecoder, but not in WordBuilder

ference between these conditions is the task sequence (starting with either
WordDecoder or WordBuilder).

These results reveal two important trends. First, this comparison shows
that model accuracy on the WordDecoder task bene�ts substantially from
transferred in WordBuilder data, with improved average model accu-
racy by 10 percentage points or more in early training. However, the
WordBuilder model does not appear to bene�t appreciably from trans-
ferred in WordDecoder data. In fact, this trend is observed across all of the
follow cross-condition comparisons, suggesting that it is driven by some more
general relation between the two tasks. The reasons for this phenomenon
are discussed further in Section 7.1.1.

Comparing Conditions A and B provides answers to hypotheses C1 and C2 –
there is no evidence of negative transfer, a�rming C1, and there is evidence of
increased learning e�ciency in WordDecoder but not WordBuilder. These
results are essentially similar to what was expected from simulation study,
including the trend of task transfer bene�ts primarily seen in WordDecoder
but not WordBuilder .

Comparing conditions C and D provides yet another view on the impact of
multitask transfer on student model predictions. Condition C uses only trans-
fer to personalize across sessions, and does not use CATDaM to prune older
data. Condition D uses neither transfer nor continual learning to manage
training data across sessions, it simply personalizes each session anew. Com-
paring the two gives us a view into the e�ect of multitask transfer without
continual learning.

In this case, we see that there is a signi�cant negative impact of transfer
on model performance in WordDecoder. In fact, Condition C S3, is the only
session over all conditions in the entire study in which the same-task model
accuracy declines by more than 5 percentage points. The classi�er accuracy
goes from almost 80% to 55%, an enormous drop. The model accuracy recovers
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Figure 23: C-D Cross-condition Results. Without continual learning, Task shift
causes model performance to degrade in Condition C

after training on new target-task data, but, unlike Conditions A and B, the
Condition C model takes a large performance hit from task switch, suggesting
that continual learning (CATDaM in particular) helps mitigate the potential
for negative transfer in a nonstationary domain.

Comparing conditions A and C provides yet more insight on the impact
of continual learning directly on model accuracy. In both conditions, data
is transferred across tasks, but only in Condition A does CATDaM actively
prune old training data. Within WordDecoder we see that the Condition C
model initially outperforms the Condition A model, but falls behind it after
task switch and data transfer, before reaching roughly equivalent perfor-
mance at the end.

What can we conclude? In early phases of training, continual learning
methods likeCATDaMwhich remove data from the training set may be coun-
terproductive. This result is likely an artifact of the speci�c implementation
of CATDaM as a form of continual learning, in the sense that it removes past
data from the training set in response to robot demonstrations independently
of the total amount of data already observed (or the potential impact on
model performance). Therefore, in early phases of training, continual learn-
ing methods like CATDaM might lower model accuracy (by unnecessarily
removing data). However, when a model needs to account for a signi�cant
shift in task distribution (e.g. at the start of S3), these same methods may
prove advantageous.

Finally, comparing conditions A and D sheds light on the impact of com-
bined lifelong personalization on model performance. Condition A both in-
corporates multitask data across tasks and uses CATDaM to actively prune
old training data. The Condition D agent did neither, and personalizes only
within sessions.

Initially, we expected that Condition A would outperform Condition D,
due to many studies indicating the bene�ts of long-term personalization



6.5 results 81

Figure 24: A-C Cross-condition Results. CATDaM reduces model accuracy during
early phases of training in Condition A

(multiple sessions, without transfer or continual learning). But what we see
instead, is that Condition D is substantially more accurate than Condition A
over all sessions (in WordBuilder).

In S1, D is doing better than A because it does not implementCATDaM and
is not actively pruning training data from the early rounds. In S3 however,
D does a lot better than A, which itself was markedly better than C. In
discussing the A-C cross-condition comparison results, we attributed A’s
superior performance to the use of continual learning to improve adjusting
to the task switch and student nonstationarity.

If the lack of a continual learning learning mechanism in Condition C was
clearly detrimental to model accuracy after task switch, why weren’t we
seeing that in Condition D? From a certain point of view, the within-session-
only personalization scheme used by models in Condition D could be viewed
as achieving the same goals as a hyper-aggressive variant of CATDaM. In
other words, CATDaM helps a model forget old data, but not as fast as never
‘remembering’ that data in the �rst place.

This interpretation makes sense in the context of a (highly) nonstationary
domain like estimating student knowledge – the students’ learning is pro-
ceeding so rapidly that only the most recent data (whether transferred from
a source task or directly observed in the target task) is useful for prediction,
but it loses predictive power more quickly than expected. We attribute Con-
dition D’s especially strong performance to the fact that its personalization
algorithm is well-suited for highly nonstationary, rapidly changing targets
like student learning.

Under such conditions, more personalized data may not always lead to
improved model performance, and simple continual learning methods (like
CATDaM) may not adjust the model’s training data distribution as quickly
as the generating distribution (i.e. the student’s cognitive state) changes.
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Figure 25: A-D Cross-condition Results. For a rapidly changing modeling target,
incorporating long-term personalized data may not improve model per-
formance.

These comparisons provide answers to hypotheses C3 and C4: In general,
we do not �nd that Lifelong Personalization improves �nal model perfor-
mance. We do �nd a mixed bene�t of Continual Learning methods – bene�cial
after task switch, and slightly detrimental in early phase of training (before
task switch).

6.5.3 Student Learning Results

Complementing the computational hypotheses, we also explored three
“human-centered" hypotheses, focused on the di�erences in student learning
across conditions. These evaluations both support the conclusions of the
Computational hypotheses, and reveal additional interaction e�ects between
transfer learning, continual learning, and student learning.

One of the major �ndings detailed in the previous section was that the
model accuracy improvements attributable to cross-task transferred data
were not bi-directional, which we attributed to WordBuilder being a more
challenging literacy task than WordDecoder, limiting the amount of infor-
mation that WordDecoder conveys.

Figure 26 shows that Assessment Phase student accuracy was lower for
WordBuilder than the corresponding session of WordDecoder in all con-
ditions, a�rming that the WordBuilder task was more challenging for
students than WordDecoder. Comparing the within-task learning rate (i.e.
di�erence in same-task Assessment Phase student accuracy), we can compute
an average measure of learning for each task, compared across personaliza-
tion conditions.

Participants in Condition A learned at both a lower rate and achieved a
lower �nal pro�ciency. By this metric, Condition D had the best learning rate,
and Condition C was somewhere in the middle. Condition D had notably
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Figure 26: Student Performance during Assessment phase, separated by game. Stu-
dents performance improved over time in both games, with lower perfor-
mance overall on WordBuilder. Bars indicate standard error of the mean
(SEM)

lower learning gain in WordBuilder from Session 1 to Session 2, but that
is largely attributable to a higher base accuracy in Session 1. Condition B
provides order-balanced con�rmation of these learning dynamics, as the task
order was reversed from Conditions A,C, and D, yet the same patterns hold.
These results imply that, contrary to the �ndings of the simulation study,
student learning in these games is hindered by the addition of multitask
transfer and continual learning!

We hypothesize, this discrepancy is largely due to the changes in task
design and study population, a�ecting the underlying dynamics of learn-
ing. With young students, principles of spaced repetition are important for
learning, and one of the e�ects of CATDaM is to induce the model to bring
back words that have been demonstrated or observed before. Older students
(especially students of MIT caliber) may be quicker to master words and
generalize principles through single examples, therefore their total learn-
ing may be driven more by exposure to the greater quantity and variety
of words presented in Conditions C and D. These results underscore the
importance of a close understanding of learning dynamics within the target
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Figure 27: Results from student word learning posttest, by condition. Grey indicates
chance level.

Figure 28: Results from student letter learning posttest, by condition. Grey indicates
chance level.

population and task, which should be approximated by the design of each
game’s personalization model, ContentModel and StrategyModel.

These results are essentially supported by the word and letter posttest
learning results, shown in Figures 27 and 28. Condition A students performed
signi�cantly worse than students in all other conditions (B,C, and D). The
signi�cant di�erence between Conditions A and B suggests that personal-
ization condition may not be the primary driver of the learning di�erences
(Condition A and B use the same personalization system) and some other
factor (perhaps sample variance in language acquisition aptitude, see Section
7.1) may be responsible for lower student learning in Condition A.
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Essentially, these results show a robust �nding of learning gains over all
students for both games, but that there are major learning di�erences across
condition. In terms of the speci�c hypotheses outlined before study launch,
these results suggest that student assessment learning and student posttest
learning is a�ected by Personalization condition (H2, H3), but that, in light
of the di�erences between Condition A and B, it may not be the largest or
most important factor.

6.5.4 Student Engagement Results

Results from the posttest engagement survey (Figure 29) do not indicate
any signi�cant di�erences in the self-reported e�ectiveness of game design
and robot behaviors across conditions. However, participants in Condition
A reported lower engagement during WordDecoder compared to all other
Conditions, and lower engagement during WordBuilder compared to Con-
ditions B and D. This suggests that some factor other than personalization
impacted Condition A participants, perhaps causing both lower engagement
and lower student learning than other Conditions. In terms of the original
hypotheses, we conclude that student engagement is largely not a�ected by
personalization condition (H1).
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Figure 29: Engagement Survey results



7
C O N C L U S I O N

7.1 summary of results and additional discussion

In this thesis, I have introduced and developed the idea of ‘lifelong person-
alization’ as a combination of multi-task personalization (via transferrable
student models) and continual learning. These concepts were �rst developed
and evaluated in simulation, and then rigorously evaluated in the context of
a multi-session human subjects study, generating a wealth of data providing
insight into the impact of transfer learning and continual learning on student
model accuracy and student learning.

To summarize these results: We do see evidence that transferred task data
bene�ts model accuracy in early phases of task training, especially when
combined with continual learning, in theWordDecoder task. The task design
of WordBuilder may have been too complex or poorly suited for student
modeling and does not show any reliable condition di�erences. We also see
that continual learning (implemented in the form of CATDaM) negatively
a�ects model accuracy in early phase of task, but that without it, models are
more susceptible to negative transfer when task distribution shifts. Another
surprising �nding is that in a nonstationary environment, more personalized
data is not always better. For example, Condition D is ‘forgetful’ (i.e. does not
retain personalized data across tasks or sessions) but does best at predicting
future student performance, likely because student learning proceeds very
quickly, thereby rapidly changing the students’ knowledge state (the cognitive
modeling target). Finally, we do observe signi�cant student learning across
multiple dimensions over the course of the study. However, it is not clear
that the personalization condition has much of an impact on student learning
metrics.

Below, I discuss some of the main questions and issues inspired by the con-
clusions as well as additional context regarding limitations of this research.

7.1.1 Asymmetry of Task Transfer Bene�t

Why was transfer only impactful from WordBuilder to WordDecoder and
not vice versa? This is one of the most striking and consistent trends in the
data regarding transfer learning in both simulation and human subjects study.

The student learning data provides an illuminating lens, showing that
WordBuilder was more di�cult for students overall than WordDecoder,
measured by assessment-phase student accuracy. From a linguistic perspec-
tive, WordBuilder requires two skills: ‘letter-sound pairing’ and ‘starting-
sound identi�cation’. Moreover, these skills need to be applied in a less
familiar linguistic context (i.e., Russian words are presented instead of En-
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Restatement of Hypotheses with Conclusions

C1 Lifelong Personalization does not reduce model performance with
equivalent data (Con�rmed, comparing Condition A and B).
C2 Lifelong Personalization helps models achieve better performance

with less data (Weakly con�rmed, in early phase ).
C3 Lifelong Personalization improves �nal model performance (Not
con�rmed).
C4 Continual Learning improves model performance (Weakly con-

�rmed. CATDaM appears to hurt model performance in early phases, but

help model adapt more quickly to task switch).
H1 Student engagement is a�ected by Personalization condition (Not
con�rmed).
H2 Student posttest learning is a�ected by Personalization condition

(Weakly con�rmed, Condition A is signi�cantly lower than C and D).
H3 Student assessment learning is a�ected by Personalization condi-

tion (Weakly con�rmed, Conditions C and D outperform A and B).

glish). Based on these aspects of task design, it seems likely that a correct
answer in WordBuilder implies a student could probably correctly answer
the same word in WordDecoder, but not vice versa. Therefore, data from
WordDecoder would be less predictive (i.e. provide less information) with
respect to the WordBuilder task performance.

7.1.2 Condition Counterbalancing: Determining Appropriate Pre-test Metrics

In designing the assessments and measures for this study, we spent a substan-
tial e�ort designing pre- and post-test assessments for student learning. In
our original study design, targeted at young readers of English, we planned
to conduct a partial Phonemic Awareness Literacy Screening (PALS) assess-
ment (see Section 3.1.2) before an after the study intervention. When we
changed the target population and task design to focus on the Russian lan-
guage, we changed one of the pre- and post-test assessments to a letter
matching worksheets, planning to counterbalance the assignment of students
to experimental conditions, based on their pre-test scores.

After the �rst few participants, we discontinued the letter-matching pre-
test because every student so far told us they did not have any prior experience
with Russian and would just guess at every letter if pressed. We assigned all
participants a "pre-test" score of 0, to use in calculating normalized learning
gain. In hindsight, however, this did not mean that all experimental conditions
were equally balanced. Despite starting with "no prior knowledge", some
conditions might have had a larger population of students who were more
likely to acquire the relevant language skills, more quickly. To better balance
the groups, we could have instead tried to assess language acquisition aptitude
– a measure of how quickly of e�ciently students learn a new language from
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limited practice. This could have been done by asking students to quickly
learn or memorize a made-up language mapping, or through other more
easily assessed proxy variables, such as amount of second-language study
(of any language, not just Russian) or bilingual exposure.

7.1.3 Close Estimation of Learning Rate

Perhaps the most surprising �nding of all from this study was that Condition
D, which “forgot" students’ personalized data after each session had the best
forward predictions of student performance. Contrary to expectations, it
seemed that long-term personalized data was not bene�ting the model. Why?
If the modeling target is changing (e.g. a student is learning, and therefore
their knowledge state is changing) very quickly, and the model does not
take that into account or misestimates the rate of change, then stale data
holds back the model performance. This is the classic case of domain shift
over time, but a unique aspect is that in a tutoring interaction, the modeling
agent is deliberately taking action to induce that shift (i.e. teaching the stu-
dent). The takeaway, then, is not that “more personalized data isn’t useful"
but rather that it is important to understand how stationary or dynamic
the modeling target is, and have models accurately re�ect that rate appro-
priately through active management of training data. The implementation
of CATDaM re�ects one way in which interactive tutoring agents might
achieve this, albeit crudely. CATDaM uses contextual interaction data to
inform the rate at which it manages its training data (e.g. pruning data from
the training set after demonstrations or lessons). Even so, clearly this is an
imprecise estimate of student learning rate. More rigorous simulation studies
could prove helpful in this regard. For instance, we could have evaluated how
well a single set of parameters governing CATDaM, the ContentModel,
and StrategyModel worked across a range of simulated ‘learning rates’.

7.1.4 Student Learning and Model Learning Results Contextualize Each Other

As we have seen, computationally modeling student learning is a complex
and multifaceted problem. Designing a rigorous human-subjects experiment
limits the amount of data one can feasibly collect and the number of hypothe-
ses one can reliably evaluate. Nevertheless, looking at both student learning
data and model learning data was tremendously helpful in coming to a more
complete picture of the dynamics of a learning interaction. Looking at one
or two metrics in isolation gives an incomplete picture of the interaction. For
instance, looking at student accuracy data in WordBuilder helped elucidate
why we did not observe cross-condition di�erences in WordBuilder model
accuracy.

7.2 future work
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Figure 30: We collected a unique dataset of front-facing gameplay footage from
mask-wearing participants.This dataset could help investigate questions
regarding the utility of facial a�ect detection.

future work 1: analyzing and modeling student affect In
prior research, I have extensively studied how to incorporate student a�ective
response into personalized student modeling Spaulding et al. [2016]; Gordon
et al. [2016]; Spaulding and Breazeal [2019]; Spaulding [2020]. It may be
somewhat surprising, therefore, that this thesis has not yet introduced any
research questions that focus on sensing, interpreting, and adapting to student
a�ective response.

The primary reason why the speci�c and substantive research questions of
this thesis focus on student cognitive models rather than a�ective models is
that models of student cognition have been studied longer, are more advanced,
and have been better validated in �eld studies with students. By comparison,
models of student a�ect remain quite rudimentary: there is still substantial
debate about the reliability of automated a�ect recognition methods. Barrett
et al. [2019], how to interpret sensed a�ect data D’Mello et al. [2018], and
what sorts of conceptual modeling metaphors Yannakakis et al. [2021] are
useful when trying to “close the a�ective loop" (i.e, recognize and respond to
student a�ective displays).

This is not to downplay the deeply challenging and interesting research of
modeling student a�ect — it is a long-held research goal of mine to develop a
validated framework for combining a�ective and cognitive models to enable
social robot learning companions to address individual children’s speci�c
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educational needs (based on the cognitive model), while also doing so in a
way that engages them according to their unique socio-emotional interaction
preferences (based on the a�ective model). And in fact, I believe the study
proposed here represents an opportunity to collect a set of high-quality,
varied student a�ect data, synchronized with other contextual interaction
and assessment data. This dataset would support a variety of interesting
post-hoc analyses particularly if released as an academic resource for future
research (subject to ethics and privacy considerations).

In the end, however, a study design has to trade o� generality for rigor –
too many research hypotheses and variables will reduce the ability of the
study to answer the speci�c research questions regarding multitask and
lifelong personalization. Moreover, making student a�ect response a focal
point of our study carries some notable risks (see next section), as we expect
that masks will continue to be required in indoor group settings, particularly
when young children are present. Therefore, collecting data to support post-
hoc a�ective analysis (if possible), while focusing on direct evaluation and
comparison of di�erent personalized cognitive models seems to strike the
best balance for the goals of this thesis.

future work 2: more advanced language tasks with older
students As discussed, one limitation of this study is that the inconclu-
sive data from WordBuilder suggests a mismatch between the task complexity
and students’ ability. In addition, our model of personalized learning (de-
signed to promote practice and spaced repetition) may not have been a good
match for older students learning patterns (who treated the task more like
fast-mapping or few-shot learning).

Through repeated rounds of iterative design and testing with young stu-
dents, the game actions were repeatedly simpli�ed and slowed down to
accommodate the needs of these very young students, many of whom are
still developing �ne motor skills, in addition to language and comprehen-
sion skills. In fact, the original design of WordBuilder allowed students to
spell any number of words, using any or all of the provided letter blocks. In
future work, I would be interested in modeling language and literacy tasks
more appropriate for older students, e.g., tasks designed to help students
practice sentence structure, word choice, and other aspects of writing and
composition.

future work 3: personalized social and emotional skill
training Socio-emotional skills are another domain in which social
robots have a lot of potential to contribute as practice partners. While previ-
ous work in this area has focused on using social robots to promote social
skills in children with autism, I think a broader population of students could
bene�t as well. I envision a set of activities themed around sharing, turn-
taking, emotional articulation, and perspective-taking could be used to help
student develop empathy and socio-emotional maturity. A social robot could
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help structure and sequence these activities, reinforce successful interactions,
and encourage bene�cial patterns of self-re�ection.

7.2.1 Contributions to Long-term Vision

This thesis spans and synthesizes many di�erent research areas: interactive
robotic agents, educational games, long-term student modeling, personalized,
multi-task, and continual machine learning models, and on-site educational
intervention studies.

I have presented the motivation for the paradigm of ‘multitask personaliza-
tion’, grounded in research experience from the past decade, and extended it
(in combination with continual learning) to ‘lifelong personalization’. These
innovations have been thoroughly analyzed in simulation, and results jus-
ti�ed launching an in-person human subjects study. The study structure,
interaction design, and data collection and evaluation plan of this study
were developed to answer both computational and human-centered research
questions regarding the impact of multitask and lifelong personalization in a
rigorous, controlled study.

In addition to the scienti�c contributions of this thesis, I also plan to release
the game code, model training code, and artistic assets as resources for others
to build on. Building quality, age-appropriate educational games for young
students represents a tremendous amount of work from a team of diverse
talents: artists, engineers, game designers, educational researchers, student
pilot testers, teachers, and many more.

It is my sincere hope that this thesis will aid and inspire others to continue
researching deeply personalized interactive agents that can �exibly personal-
ize to individuals over time and across tasks to promote well-being, personal
achievement, and learning.
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