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Across a wide variety of domains, artificial agents that can adapt and personalize to users
have potential to improve and transform how social services are provided. Because of the
need for personalized interaction data to drive this process, long-term (or longitudinal)
interactions between users and agents, which unfold over a series of distinct interaction
sessions, have attracted substantial research interest. In recognition of the expanded
scope and structure of a long-term interaction, researchers are also adjusting the
personalization models and algorithms used, orienting toward “continual learning”
methods, which do not assume a stationary modeling target and explicitly account for
the temporal context of training data. In parallel, researchers have also studied the effect of
“multitask personalization,” an approach in which an agent interacts with users over
multiple different tasks contexts throughout the course of a long-term interaction and
learns personalized models of a user that are transferrable across these tasks. In this
paper, we unite these two paradigms under the framework of “Lifelong Personalization,”
analyzing the effect of multitask personalization applied to dynamic, non-stationary targets.
We extend the multi-task personalization approach to the more complex and realistic
scenario of modeling dynamic learners over time, focusing in particular on interactive
scenarios in which the modeling agent plays an active role in teaching the student whose
knowledge the agent is simultaneously attempting to model. Inspired by the way in which
agents use active learning to select new training data based on domain context, we
augment a Gaussian Process-based multitask personalization model with a mechanism to
actively and continually manage its own training data, allowing a modeling agent to remove
or reduce the weight of observed data from its training set, based on interactive context
cues. We evaluate this method in a series of simulation experiments comparing different
approaches to continual and multitask learning on simulated student data. We expect this
method to substantially improve learning in Gaussian Process models in dynamic
domains, establishing Gaussian Processes as another flexible modeling tool for Long-
term Human-Robot Interaction (HRI) Studies.
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1 INTRODUCTION

Our goal is to develop adaptive robotic agents that are deeply
personalized and designed for long-term interaction. Such an
agent would be an invaluable asset that could foster learning in
ways similar to those of the best human teachers, yet still provide
the advantages of digital technology such as data fluency, always-
on availability, and scale of distribution. Educational researchers
have long recognized that a personalized approach to pedagogy is
one of the best ways of promoting learning (Pane et al., 2015), yet
in a world with increasing demand for education, the availability
of qualified teachers has not kept up with the demand from
students. Technology has an important role to play in realizing
the vision of personalized education for all. In recognition that
learning is not only a cognitive process, but also an emotional and
a social process, we seek to design social robots learning
companions that are capable of understanding students,
adapting to them, and introducing them to educational
material that is best suited for each student, presented in a
way that takes into account their individual learning differences.

A 2018 review (Belpaeme et al., 2018) on the use of social
robots as educational tools concluded “(social robots) have been
shown to be effective at increasing cognitive and affective
outcomes and have achieved outcomes similar to those of
human tutoring on restricted tasks” (emphasis ours). What are
these restricted task scenarios? “short, well-defined lessons
delivered with limited adaptation to individual learners or
flexibility in curriculum.” Results from studies of single-session
tutoring interactions with limited personalization paint an overall
picture of benefits that are stable, positive, andmodest. In order to
improve the impact of social robot tutoring technology,
researchers are looking toward educational interactions where
personalization plays a larger role, and to long-term interactions
to develop deeply personalized models.

Despite general recognition that long-term interactions enable
a more impactful approach for the field, developing agents
capable of sustaining long-term interactions is no simple feat.
Some of the challenges researchers face in sustaining long-term
interactions include lower student engagement (due to repetitive
interactions and declining novelty), personalized models that
represent only limited aspects of student mastery (narrowly
focused models are more straightforward to implement and
require less data to train), and early stopping (due to cold-
start model learning, leading to poor model performance in
early sessions).

1.1 Multitask Personalization - Learning
Personalized Models Across Different Task
Contexts
To address some of these challenges, we advocate an approach to
long-term interaction design called “multi-task personalization”
in which students interact with a social robot across different task
contexts throughout a long-term interaction. Within each task,
the robotic interaction partner learns a task-specific personalized
model of the student that is transferrable across tasks throughout
the long-term interaction, i.e., data collected from earlier

interactions with a student on a prior task can be used to
improve personalized model learning in a new task.

A multitask personalization approach has potential to address
many of the practical challenges associated with sustaining long-
term interactions. Student engagement is likely to remain higher
over time when engaged in different, varied tasks with a learning
partner, compared to repeating the same task multiple times.
Personalized student models can also draw on data from a wider
variety of task contexts in order to learn a more multifaceted
picture of a student’s mastery. And transferring data from
interactions on prior tasks can help speed up model learning
on a new task, reducing the risk of early stopping from cold-start
learning.

In prior work (Spaulding et al., 2021) we laid out the
theoretical benefits of a multi-task personalization paradigm
and evaluated the combined-task proficiency and data
efficiency of the approach in models trained to estimate
simulated student mastery in two different game tasks. These
games, called RHYMERACER and WORDBUILDER, were developed in
partnership with experts in children’s media and early literacy
learning, and were designed to help young students practice
different literacy skills, namely rhyming and spelling.

We developed a flexible Gaussian Process-based approach to
modeling student knowledge in each game task, with an instance-
weighting protocol based on task similarity that allowed for data
transfer across tasks. We showed that multi-task personalization
improved the sample-efficiency of model training, and was
particularly useful for avoiding the problem of “cold-start”
modeling. This research was conducted with the assumption
that student knowledge was static i.e., that students’ level of
knowledge was fixed throughout the interaction sequence. In
order to further validate the potential of multitask personalization
for real-world scenarios—and recognizing that in real human-
robot educational interactions, a student is not a fixed target but a
dynamic one—we look to augment our original approach to
multitask personalization with methods that better support
personalized modeling of dynamic/non-stationary targets.

1.2 Continual Learning-Learning
Personalized Models of Non-Stationary
Targets Over Time
“Continual Learning” (CL) – a “learning paradigmwhere the data
distribution and learning objective change through time, or where
all the data . . . are never available at once” (Lesort et al., 2020) is
precisely the family of methods to complement our original
multitask personalization approach. Continual Learning
primarily deals with the issue of distributional shift over time,
recognizing that, in the real world, temporal data are not
independent and identically distributed (“i.i.d”), but rather
drawn from a distribution that may change over time, but
without a clear signal of such a shift (Lesort et al., 2020).
Continual Learning techniques attempt to improve model
performance as this shift occurs, often with an implicit
assumption that such shifts will be relatively smooth.

Multitask learning, on the other hand, focuses more on
learning distinct tasks with clear boundaries. In a typical
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multitask learning scenario, a learner knows from which tasks its
training data originated, assumes that each such task is stationary
and that its data is i.i.d, and, frequently, the training data arrive in
a batch, rather than over time. These broad distinctions can
largely be characterized by a focus on task “shift” vs. task “switch”
However, this boundary is not always strict, and researchers often
work to address both issues simultaneously [e.g., (Ruvolo and
Eaton, 2013)].

As human-robot interaction (HRI) researchers have begun to
adapt research methods towards long-term interactions,
continual learning methods have become more popular in the
algorithms and models underlying these interactions. Churamani
et al. have detailed many advantages of adopting a continual
learning approach in developing affect-aware interactive robots
(Churamani et al., 2020). The authors highlight a number of
important shifts in viewpoint when adopting this approach-
recognizing that human affective response is idiosyncratic
(i.e., personalized), dynamic (i.e., changes over time), and
contextual (i.e., changes with task or environment). We argue
that these same qualities apply more broadly, to many aspects of
human interactive behavior, though in this paper we primarily
focus on student learning in educational interactions. Indeed,
many of the most salient markers of learning behavior are
affective behaviors, therefore it is only a short conceptual leap
to hypothesize that the benefits of Continual Learning applied to
affect recognition and response may prove similarly beneficial
when applied to recognizing and responding to student learning
behaviors.

Though Churamani et al. did not explicitly refer to long-
term interactions (LTI) with users, the theoretical frameworks
of continual learning and multitask personalization are natural
fits for the practical goal of sustaining long-term interactions.
Our goal in this paper is to demonstrate the strengths of this
combined approach by emphasizing their benefits in the
application domain of an agent attempting to model
student knowledge in the form of a STUDENTMODEL. Students’
knowledge is idiosyncratic (each student has their own private
mastery model), dynamic (this model can change over the
course of an interaction), and contextual (student knowledge
can manifest differently in different task contexts). A modeling
approach that acknowledges and accounts for these qualities
may be the key to successful, personalized long-term
interactions.

1.3 Lifelong Personalization-Personalized
Modeling Across Tasks and Over Time
Therefore, we propose to move beyond the traditional
algorithmic view of modeling student knowledge as supervised
learning of a fixed target, or “estimation” of mastery on a single
task. Instead, we adopt a broader view of student modeling that
incorporates ideas from both continual and multitask learning
into an approach to long-term student modeling as a process of
personalization over time and across tasks, which we refer to as
“lifelong personalization.”

To motivate our use of this term and connect the dots between
various methods referred to in other literature, we outline here

the relational structure of several key concepts used throughout
the remainder of the paper.

Personalized student modeling has been shown to help
promote student learning and engagement (Yudelson et al.,
2013; Lindsey et al., 2014; Park et al., 2019; Ramachandran
et al., 2019). In order to advance the degree and sophistication
of personalized modeling, we require personalized interaction
data from a student. To elicit useful quantities and kinds of
personalized student data, researchers have been looking towards
long-term interaction designs (Leite et al., 2013), which occur
over several sessions at different times. After observing
shortcomings of single-task longitudinal interactions, we
introduced the idea of “multi-task personalized” interactions,
which occur in different task contexts (Spaulding et al., 2021).
Each of these paradigm shifts in interaction design are mirrored
by an associated paradigm shift in algorithm and model design:
continual learning, which accounts for the temporal sequence in
which data is received and assumes a dynamic or non-stationary
modeling target, and transfer learning which accounts for the task
in which training data originated and uses data from one “source”
task to more quickly learn a model in a different “target” task.
When we combine these two algorithmic paradigms, yielding
flexible personalized models that can model individuals over time
and across tasks, we call this lifelong personalization, based on
Parisi et al.’s definition of lifelong learning systems as “an
adaptive algorithm capable of learning from a continuous
stream of information, with such information becoming
progressively available over time and where the number of
tasks to be learned (e.g., membership classes in a classification
task) are not predefined” (Parisi et al., 2019). This concept
structure is represented graphically in Figure 1.

Of course, these are not universal definitions of these terms,
and many researchers may interpret or use these terms in slightly
different ways. In this paper, we apply these definitions in the
context of personalized interactive modeling. Some works look at
separate individuals as separate tasks (Jaques et al., 2017), some
works consider non-stationary task learning as the primary
hallmark of lifelong learning (Xie et al., 2020). For the
purposes of this paper, however, we restrict our discussion to
the application of these paradigms in the context of learning
models of an individual over time and across tasks for adaptive
personalization.

1.4 Research Contributions
Our main experimental contributions in this paper include an
expanded treatment of prior work on multitask personalization,
evaluating an approach to transferrable player models based on
Gaussian Processes in a simplified modeling scenario that
assumes student knowledge does not change throughout an
interaction. We then extend this approach to a more complex,
nonstationary simulation scenario that incorporates the in-game
actions of the tutoring agent, and the effect of these actions on the
underlying knowledge of the student modeling target (i.e., student
learning in response to tutoring actions).

We show that ignoring the effect of in-game tutoring actions
on student knowledge (by assuming a stationary modeling target)
reduces the accuracy of the agent’s learned student model, but
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that by augmenting the agent with a mechanism for continual
active training data management (see below), the learned student
models can account for context-dependent shifts in the students
underlying knowledge and learn more accurate final models of
student knowledge. When we discuss “adaptive personalized
tutoring agents,” we fundamentally mean developing agents
that select tutoring actions based on a personalized student
model. By extending our simulated evaluation to scenarios that
account for the impact of tutoring agent actions, not only can we
study the effect of multitask and continual learning methods on
tutoring agents’ learning of personalized student models, but we
can also study how these methods ultimately impact student
learning, by tracking the degree of shift in underlying student
knowledge.

In addition to experimental work exploring core questions of
viability, efficiency, and proficiency benefits provided by multi-
task personalization in nonstationary environments (i.e., “lifelong
personalization”), another goal of this article is to further
stimulate discussion on the algorithmic impact and interaction
design considerations of multitask personalization, bringing
together perspectives on Continual Learning with an applied
focus on practical goals of HRI experimenters, through the lens of
educational interactions. In particular, we advocate for more
widespread simulation analysis of students in personalized
algorithmic or model-driven long-term HRI work. Given the
difficulty and complexity of deployed long-term HRI studies, and
the potential for simulation research to assist in tuning
hyperparameters or validating algorithmic approaches, we
advocate for establishing simulation results as a “best practice”
benchmark before undertaking in-person studies.

1.5 Summary of Approach
This paper directly extends prior research on multitask
personalization. In Spaulding et al. (2021) we conducted a
study of multitask personalization paradigm by evaluating the
effects of taking personalized training data from the
STUDENTMODEL of one game and transferring it to train the

STUDENTMODEL of the other using an instance-weighting
scheme based on task-similarity. Based on simulation data
from a simplified model of a student, we showed that this
form of multitask personalization was viable (i.e., supported
transfer between source and target tasks without negatively
impacting target task performance) and improved data
efficiency (i.e., showed clear evidence of avoiding cold-start
learning in the target task), especially early in the target task.

The simulated student data was derived from automated
playthroughs of two interactive game tasks called RHYMERACER

and WORDBUILDER, part of an integrated physical system that
supports educational co-play between live students and a
social robot (see Figure 2). Both games were designed in
collaboration with experts in early literacy and children’s
media to help young students practice literacy and language
skills. Within each game, a student and a robotic tutoring

FIGURE 1 | Conceptual structure of terms and goals.

FIGURE 2 | An integrated social robot platform that supports different
game “tasks.”
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agent play together, answering puzzles designed to promote early
literacy and language skills, such as rhyming and spelling.
Throughout each game, the robotic agent attempts to learn a
STUDENTMODEL of the student player’s mastery of the game, based
on their in-game actions and responses. This STUDENTMODEL is
then used within each game to adapt content and robot tutoring
actions to improve student learning in a personalized way.

In Spaulding et al. (2021), we were primarily concerned with
understanding and evaluating basic performance of multitask
personalization. In our simulated playthroughs, we made a
number of simplifying assumptions, ignoring actions of the
robot tutor player and assuming that the student’s underlying
mastery of words (i.e., state of knowledge), though observed
noisily, was fixed. Those assumptions ensured that the
distribution of each individual student’s responses was IID. In
this paper, we take another step toward more realistic interactions
and present results from simulation experiments that relax those
assumptions. We present results from a new round of simulation
experiments, in which the robotic agent now takes an additional
active role in the interaction, selecting words to “demonstrate” to
the student as a lesson, which stochastically alters the student’s
underlying mastery (which is later noisily observed by the
tutoring agent). As demonstrations shift the student’s mastery
over time within each task, the proficiency of each tasks’
STUDENTMODEL declines, presenting an opportunity to adopt a
continual learning approach alongside multitask personalization.

The computational tool underlying each game’s
STUDENTMODEL is a Gaussian Process (GP). Past studies have
shown that Gaussian Processes can serve as a flexible
paradigm for modeling user’s knowledge state in interactive
learning scenarios (Griffiths et al., 2009; Spaulding et al.,
2018). Gaussian Processes tend to be data-efficient relative to
other supervised learning methods (e.g., deep learning), and
domain knowledge such as connections between curricular
components can be encoded via the covariance kernel that
drives the GP inference. Over several prior projects, we have
developed a unified “word-space” representation for Gaussian
Processes that has successfully been used to model student
mastery over a wide variety of different language and literacy
skills (Spaulding et al., 2018; Spaulding and Breazeal, 2019;
Spaulding et al., 2021). Our approach to multitask
personalization involves transferring the student data used to
train each task’s STUDENTMODEL from its originating (source) task
to another (target) task, re-weighting each observed point based
on an instance-specific measure of task similarity derived from
each task’s Gaussian Process covariance kernel (see Section 3.4
for more detail).

One drawback of Gaussian Processes, however, is that they do
not naturally have a representation of data received over time (in
contrast to Dynamic Bayesian Network approaches like
Knowledge Tracing). Because of this, when modeling a
dynamic target, such as a student learner or other non-
stationary domain, Gaussian Processes are slower to adjust to
shifts in the data generation process, compared to learners which
weight recent data more heavily.

To improve the ability of the GP-based STUDENTMODELs to
handle lifelong personalization, we introduce a continual active

training data management (CATDaM) mechanism that allows
the tutoring agent to proactively manage its training data through
a novel two-way active learning protocol, enabling the model to
both select new data points to add to its training set and
automatically prune its existing training set to remove “stale”
data points that may no longer be a good representation of the
dynamic student. The normal (mean and variance) form of the
Gaussian Process posterior distribution at each domain point has
a natural interpretation as a model estimate and uncertainty
surrounding that estimate, another way in which Gaussian
Processes are well-suited for agent-based machine learning
settings. The tutoring agent steers student learning by
proactively choosing words to demonstrate (i.e., teach a lesson
about) to the student based on the latest STUDENTMODEL, and
actively improves STUDENTMODEL learning by proactively choosing
new training data to observe or by deleting old training data that
may no longer reflect the student’s shifted mastery.

We find that the sample-efficiency benefits of multitask
personalization are largely preserved, but that both single-task
and multitask GP models that do not use CATDaM show a
substantial drop in performance in the non-stationary setting.
However, both single-task and multitask GP models that do use
CATDaM regain and/or exceed this performance drop in the
more complex non-stationary environment. Moreover, because
we are now modeling the impact of tutor actions on dynamic
students, we can evaluate the impact of algorithm and model
changes on estimated student learning, in addition to model
learning. We find that in interaction with agents whose
STUDENTMODELs use CATDaM, students learned (underlying
mastery went from negative to positive as a result of an agent
demonstration) approximately 50% more words. Together these
results suggest substantial benefits to adopting a “lifelong
personalization” approach — via instance-weighted data
transfer for multitask personalization and CATDaM for
continual learning — to long-term human-robot interaction.

2 RELATED WORK

2.1 Perspectives on Lifelong
Personalization
Long-term or Longitudinal Interaction (LTI) is a term used to
refer to interactions between a user and an artificial agent that
unfold over multiple distinct encounters (Irfan et al., 2019). In
other words, “long-term interaction” describes a practical
paradigm for designing and evaluating interactions between
users and agents. In the context of educational interactions,
long-term interactions have followed a pattern of users
engaging in a single repeated interaction structure (i.e., playing
a single game or answering questions) with updated content
reflecting the output of increasingly personalized models trained
on data from the previous interaction sessions (Leite et al., 2013).
While this type of repeated single-task interaction has formed the
bulk of long-term interaction research to date, there is a
recognition that we may be near the useful limit of current
single-task paradigms, and that future breakthroughs in
sustaining long-term interactions will come from research
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developing agents that can personalize to a user’s changing
behaviors and preferences over time and across task contexts.

Johnson and Lester, in an article reflecting on 20 years of
research to predict future trends for pedagogical artificial agents
wrote: “Conventional domain-specific learner models may be
useful for pedagogical agents in the short term, but they will be of
limited value over time as learners move between learning
experiences (Johnson and Lester, 2018).”

Melanie Mitchell, weighing in on the utility of modern AI
systems, wrote:

In fact, the theoretical basis for much of machine learning
requires that training and test examples are “independently and
identically distributed” (IID). In contrast, human learning—and
teaching—is active, sensitive to context, driven by top-down
expectations, and transferable among highly diverse tasks,
whose instances may be far from IID (Mitchell, 2020).

Finally, in a lecture addressing future challenges for the field of
Learning Analytics, Ryan Baker identified “transferability” as the
first of a series of challenge problems for the field to tackle over
the next 20 years, writing.

A modern learning system learns a great deal about a
student—their knowledge at minimum, and increasingly their
motivation, engagement, and self-regulated learning strategies.
But then the next learning system starts from scratch . . . It’s like
there’s a wall between our learning systems . . . If you seek better
learning for students, tear down this wall (Baker, 2019)

Fundamentally, personalized student data remains a major
practical challenge towards achieving successful interactive
educational systems. Single-session educational interactions in
HRI [some, e.g., reviewed in (Belpaeme et al., 2018)] generally do
not provide enough data to learn interesting and distinct
personalized models capable of sustaining extensive learning
gains or engaged interaction in the long-term. Thus far,
successful examples of long-term adaptive personalization tend
to repeat a carefully designed interaction centered on a single task
over several sessions to augment the dataset (Park et al., 2019;
Ramachandran et al., 2019).

2.2 Related Work on Transfer Learning and
Nonstationary Modeling in Gaussian
Processes
In general, rather than compiling lists of relevant citations, we
prefer to introduce and cite prior work at relevant sections
throughout this paper. However, owing to the more abstract
nature of the following articles and less direct applicability to the
empirical content of the rest of the paper, we wish to briefly
highlight some particularly helpful articles that inspired our
thinking in the area of transfer learning and nonstationary
modeling, as applied to Gaussian Processes.

Soh et al.’s formulation of transferrable trust models using
Gaussian Processes uses a similar kernelized “task”
representation to our design of task-specific STUDENTMODELs
(Soh et al., 2020). Snoeke and Adams outlined an “input-
warping” method to address nonstationarity in Gaussian
Processes that provided a clear exposition of theoretical
capabilities of GPs to handle nonstationary functions (Snoek

et al., 2014). Cao et al. introduced us to the idea of transfer-
coefficient based instance-weighting for Gaussian Processes (Cao
et al., 2010), and our evaluation measures of transfer viability,
efficiency, and proficiency are based on discussion in Rosenstein
et al. (2005).

3 PERSONALIZED LITERACY GAME
SYSTEM

To investigate the algorithmic effects of multitask personalization
and lifelong learning in students, we have developed an
integrated, deployable social robot system capable of
sustaining language/literacy practice between young students
and a robot through game-based interactions. Thus far, we
have used this system to investigate multitask personalization
via player model transfer between two games, called RHYMERACER

and WORDBUILDER, which are designed to help young students
practice rhyming and spelling skills, respectively, through
interactive co-play with an adaptive, personalized robot
tutoring agent. Both games were developed for Android tablets
using the Unity game engine, and receive robot action commands
and relay player input through ROS (Quigley et al., 2009) to a
backend system controller. The games were developed for
children learning to read, approximately ages 5–7, and
throughout the design and development process we consulted
experts in children’s media design and early childhood literacy to
ensure that both the content and game designs would be age-
appropriate and aligned with the overall educational goals of the
project.

As the child and robot play each game together, the robot
tutoring agent learns a Gaussian Process model, which we refer to
as the STUDENTMODEL, that estimates the child’s “mastery” of the
game. Both games share a CURRICULUM of words, which serves as
both a list of words a student can encounter in the game as well as
a unified domain space for the underlying STUDENTMODELs of each
game. In other words, the STUDENTMODEL is an estimate of how
likely the student is to successfully apply the primary literacy skill
(rhyming, spelling) to each word in the CURRICULUM, based on
observations of their prior gameplay. Each game has undergone
playtesting validation and the CURRICULUM was curated by experts
in early childhood learning to ensure a representative set of 74
words that are generally phonetically, orthographically, and
semantically (e.g., animals, foods, household items) age-
appropriate, and form distinct rhyme groups.

3.1 RhymeRacer: Game Design and
Educational Principles
The gameplay and design of RHYMERACER centers around the
family of literacy skills known as “phonological awareness and
phonemic articulation.” It is a two-player game that proceeds in a
series of rounds, each of which offers a chance for either the robot
tutor or the student to select a word that rhymes with a central
“prompt word”. In this paper, the gameplay of RhymeRacer is
unchanged from its presentation in Spaulding et al. (2021), which
we here quote:
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“RHYMERACER is . . . a fast-paced, competitive, 2-player
game that proceeds through a series of discrete game
rounds. At the start of each round, the tablet shows a
picture of the “Target” word in the center of the screen
(see Figure 3), surrounded by four “Prompt” word
graphics, smaller pictures of other words from the
CURRICULUM, exactly one of which rhymes with the
Target word. The tablet also gives a recorded audio
prompt, saying “What rhymes with(Target Word)?” as
the images are displayed. The first player to correctly tap
on the rhyming Prompt word graphic is awarded
points, after which the graphics clear and the next
round begins.

The robot player is presented to the human player as a co-
playing peer, and its outward behavior affirms this
framing: the robot player selects Prompt word graphics
just as the human player does, gives a mixture of correct
and incorrect responses, and responds with appropriate
socio-emotional behaviors to in-game events (e.g., acts
excited when scoring points, disappointedwhen incorrect,
encouraging when human player scores points).”

3.2 WordBuilder: Game Design and
Educational Principles
WORDBUILDER is the second game we developed to study multitask
personalization in long-term interactions. It was specifically
designed to complement RHYMERACER and went through a
similar design process, including playtesting, consultation with
educational experts, and content and asset revision by
experienced children’s media designers. Most of the visual
assets are shared across both games, including the graphics of
the CURRICULUM words, both to help reinforce students’
understanding, and also, practically, to help ensure that the
correlation between student performance in the two games is
based on students’mastery of the underlying skills, not on factors
related to the game interface design. The gameplay of
WORDBUILDER is also unchanged from its presentation in
Spaulding et al. (2021), which we here quote:

“WORDBUILDER is a brand-new game developed to
complement RHYMERACER. The two games use a
similar design process and share some game assets to
maintain a consistent visual style, most notably the
Target word graphics that depict the words from the
CURRICULUM . . . WORDBUILDER serves as a counterpart to
RHYMERACER in two main ways: First, WORDBUILDER is
designed to help students practice spelling (an
alphabetic skill), rather than rhyming (a phonetic
skill), to broaden the curricular coverage of the
unified system. Second, WORDBUILDER features
collaborative, rather than competitive, gameplay; the
robot and child work together to solve a spelling puzzle
posed by the tablet, as opposed to the “first-to-answer-
wins” style of RHYMERACER.

Much like RHYMERACER, gameplay proceeds through a
discrete series of rounds, each associated with a round
“Target” word whose graphic is displayed at the top of
the screen. The letters which make up the Target word
are randomly placed into letter blocks surrounding a set
of (initially empty) letter slots in the center. For
example, if the round Target word is SNAKE, the
tablet shows an image of a snake and the letters S-N-
A-K-E in letter blocks in a random order and location,
surrounding five empty letter slots (see Figure 4).
Within each round, the student and the robot can
each freely place letter blocks into the center squares
to spell words; the round ends when the submit button
is pressed, and the human-robot team scores points if
the team placed all the letters of the Target word into the
correct letter slots. The completed word is then
displayed on the right side of the screen, and the
next round starts.”

These games were designed together to study multitask
personalization in long-term interaction. They share a
common software and system architecture and, notably, the

FIGURE 3 | A round of RhymeRacer. FALL is the Target word, Prompt
words are RAIN, COAT, PAIL, and BALL.

FIGURE 4 | Screencap of a single “round” of WordBuilder. “SNAKE” is
the Target word, and the letters “S” and “N” have been provided as a partial
solution.
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word-space Gaussian Process modeling paradigm described in
Section 3.4. Within this common framework, however,
individual model implementations, like the literacy skills each
game is designed to promote, differ considerably.

3.3 Strategy and Content Models: Adaptive
Gameplay and Content Personalization Via
Cognitive Modeling
In this paper, we put new emphasis on the robot tutor’s
demonstration actions. At various points in both games, either
the student or the tutor will have an opportunity to respond to a
word presented from the CURRICULUM. The CONTENTMODEL

determines which specific words, drawn from the CURRICULUM,
are presented, while the STRATEGYMODEL determines whether the
student is prompted to respond (giving a “sample” of training
data for the STUDENTMODEL) or whether the robot responds
(providing a “demonstration” that can potentially improve
student learning). This paradigm of interwoven “samples” and
“demonstrations” that mix assessment and learning is an example
of the “stealth assessment” design pattern, commonly used to
achieve educational goals in interactive games without breaking
immersion and experience flow (Shute and Ventura, 2013).

In live gameplay, the robot’s STRATEGYMODEL selects
probabilistically from two “strategy actions”—OBSERVE and
DEMONSTRATE—at each action decision point. When the
STRATEGYMODEL selects the OBSERVE action, it gives the child
an opportunity to respond, prompting a response if none is
immediately forthcoming. When the STRATEGYMODEL selects the
DEMONSTRATE action, the robot proactively gives its own
response: a correct answer and an explanation of its reasoning.

The CONTENTMODEL determines what specific words from the
CURRICULUM are presented to the players, and in what order. In
this work, the CONTENTMODEL selects words via an Active Learning
protocol, which selects the word that best aligns with the goals of
the tutor’s selected strategy, given the current estimated
STUDENTMODEL of the student. For instance, if the current tutor
strategy is OBSERVE, the CONTENTMODEL selects the word with
the maximum uncertainty under the most recent posterior
STUDENTMODEL i.e., the word where the agent is least confident
about its estimate. If the current tutor strategy is
DEMONSTRATE, the CONTENTMODEL selects the word with
lowest variance of all words with negative posterior mean
i.e., the word that the agent is most confident that the student
has not mastered.

In order to effectively teach a student, the agent must know
what words the student has already mastered and which it has
not. Therefore the agent faces the twin challenge of
simultaneously estimating a student’s individual knowledge
state while using its latest estimate to teach new content,
though the act of teaching itself may change the student’s
underlying knowledge. The STRATEGYMODEL balances these two
objectives, while the CONTENTMODEL employs active learning to
improve both objectives, speeding up both model learning and
student learning. As the number of demonstrations increases over
time, shifting the student’s knowledge and, therefore, the
distribution from which their observed “samples” are drawn,

the tutoring agent employs a form of “negative” active learning to
remove past samples from the STUDENTMODEL training set. We
expand on the implementation of this ‘continuous active training
data management (CATDaM) in Section 3.7.

3.4 Gaussian Processes: A Flexible
Representation for Cognitive Modeling
The fundamental modeling approach we use to represent
student’s cognitive task mastery is Gaussian Process
regression. A Gaussian Process (GP) is a distribution over
functions, defined over some input domain, where the joint
distribution of the functions at any finite set of domain points
is jointly Gaussian, i.e., at any particular domain point (x ∈ X),
the GP posterior has a Gaussian form (mean and variance),
{ μx, σx}.

A Gaussian Process is defined by a mean function and a
covariance function. In discussing GPs, we say that functions,
defined over a domain X, are distributed according to a Gaussian
Process with mean function μ, and covariance function k (Eq. 1).
Functions are sampled (or “realized”) from the GP posterior by
combining samples from the GP posterior at a set of domain
“test” points (the GP posterior at each point has a normal form).
The mean and variance of the GP posterior at each test point is
driven by two factors: First, a set of observed training data,
D � {{x0, y0} . . . {xi, yi}}, and second, the covariance function,
k(x, x’) that relates how “close” two points in the domain are
to each other—more technically, the degree to which the
posterior predictions at two domain points are correlated.

When the covariance function is designed as a nonlinear
distance map, the GP covariance function is referred to as a
covariance kernel, and Gaussian Process inference sometimes
framed as a method for estimating the value of unobserved “test”
points based on observed “training” points and a kernel that
computes distances between training and test points. This view,
perhaps more familiar to practicing data scientists, casts Gaussian
Process inference in the framework of supervised learning.
Gaussian Processes are widely used across a variety of real-
world domains in part, for their ability to perform well in
data-sparse applications (Wang et al., 2005) and for the ready
interpretation of their posterior as function estimates with
uncertainty bounds.

f (x) ∼ GP(μ(x), k(x, x’)) (1)

3.5 Gaussian Processes in Word Space:
Empirical Implementation
Gaussian Process can flexibly represent a wide variety of domains
and can be tailored by model designers to incorporate domain
knowledge via the covariance kernel. In this section we will
discuss our implementation of this approach, applied to
modeling young student’s literacy skills in separate game tasks,
defined over a shared domain of English language words, called
the CURRICULUM. Because each game task may only be able to
access a small amount of personalized data, we leverage the
shared domain to perform instance-weighted data transfer
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across game tasks, allowing a model targeting one particular
literacy skill (e.g., rhyming) to incorporate personalized data
obtained from an interaction focusing on a different literacy
skill (e.g., spelling). We also extend this approach to
nonstationary environments, by augmenting the conventional
Gaussian Process with a “continuous active training data
management” protocol, that acts as a mirror to the active
learning protocol pursued by the CONTENTMODEL–instead of
selecting domain points to add to the training set based on
the GP posterior, the CATDaM protocol selects points already
in the GP training set to remove (see Section 3.7)

Over the course of a long-term study (see Section 5 for
evaluation details), we learn Gaussian Process models for each
game (RHYMERACER and WORDBUILDER), which we refer to as the
STUDENTMODEL for that game. Each STUDENTMODEL is an estimate
of a student’s personal mastery of that game’s intended literacy
skill (rhyming or spelling). In our implementation, the
STUDENTMODELs of both games take the form of a Gaussian
Process, defined over the same domain space: a discrete set of
words (called the CURRICULUM), a set of 74 words selected in
partnership with experts in childhood literacy, supplemented
with age-appropriate words to complete the rhyme groups.

Under the framework of supervised learning, the GP mean
function is conventionally set to 0 everywhere, leaving the
covariance as the primary way for researchers to encode
domain knowledge in the model “design”. In fact, because
the two task STUDENTMODELs differ only in their covariance
kernels (they share all other hyperparameters), the
covariance functions functionally distinguish, and therefore
define the game task (with respect to each other). In other
words, because the two STUDENTMODELs share an input space,
mean function, and noise hyperparameters, the difference in
their posterior estimates, if provided with the same training
data, is solely driven by the differences in their covariance
functions.

The training data take the form of a “target word” from the
curriculum and a score, representing an estimate of skill mastery
applied to the target word, derived from gameplay. Scores range
from (−1, 1), where −1 represents complete lack of mastery, 1
represents full mastery, and 0 represents neutral mastery,
providing an intuitive scale for interpreting training data and,
hence, the GP posterior. Gaussian Processes can handle a
continuous range of inputs, but RHYMERACER and WORDBUILDER

game inputs give only a binary “correct” or “incorrect” answer
signals. To map from the binary signal of response correctness,
we blend that information with continuous contextual features
like timing. The final score (yi) for a round Target word (i.e., a
“sample”) (xi), is derived by combining adding a timing
adjustment, p(td), to the “correctness” binary variable (1 or 0),
to correct for the possibility of guessing. The timing adjustment is
applied as a discrete, step-wise penalty of 0.1 based on the number
of seconds it takes to give an answer i.e, p(td) � 0.1 · td where td is
the time of delay in seconds. For example, if a student selects the
correct Prompt word for a round within the first second, they
receive no penalty, but if they selected the correct Prompt word
after 5 s, they receive a penalty of p(td) � 0.5. The timing values
are scaled differently in WORDBUILDER, but follow the same

procedure and, ultimately, are converted to the same range
before instance-weighted transfer.

3.5.1 Designing RhymeRacer and WordBuilder
Covariance Functions: A Gaussian Process Example
in Word-Space
The key difference between the two game STUDENTMODELs is their
covariance kernels, which compute a distance metric between
words in the CURRICULUM, bringing pairs of words “closer”
together when their task outputs (i.e., estimated student
mastery) are more highly correlated. In RHYMERACER, the
covariance function is based on the cosine distance between the
GloVe semantic word vectors (Pennington et al., 2014) of each
domain word, plus an additional term that increases the covariance
between two words which share a final rhyme ending (i.e., when
words are part of the same rhyme group) (Eq. 2). This combination
of semantic and phonetic information has previously been
validated by in-person student studies (Spaulding et al., 2018),
and was developed with input from external collaborators with
expertise in early language and literacy skill development.

Covrr({wi,wj}) � ][α + cos(GloVe(wi),GloVe(wj))], (2)

where α � 1.0 iff wi and wj share a rhyme ending, and 0 otherwise.
] is a normalization constant.

WORDBUILDER’s covariance function, reflecting the spelling-
oriented is based on orthographic information—information
about the letters that make up a word’s written form. The
foundation of the covariance kernel is the Levenshtein
distance, normalized over the combined length of the two
words (Eq. 3). In essence, this kernel reflects the idea that
words which require fewer letter additions, deletions, or
substitutions to convert one word to the other are more likely
to be mastered together, or not. In both tasks, the covariance
kernels primarily function to help the GP STUDENTMODELs quickly
generalize from observed samples to words not yet seen in the
curriculum, improving the efficiency of model learning, as well as
enabling the CONTENTMODEL to make personalized choices about
which words from the curriculum to introduce in the games.

Covwb({wi,wj}) � ][Levenshtein(wi,wj)], (3)

3.6 Transferrable Gaussian Processes: An
Instance-Weighting Protocol Based on
Task Covariance Similarity
Both WORDBUILDER and RHYMERACER models work well on their own
as single-taskmodels (see Section 5.1 for single-task baselines), but
the broader goal of this project is to transfer observed training data
from one game’s StuDENTMODEL to a STUDENTMODEL targeting the
other game, i.e., multitask personalization.

Both games’ models share the same underlying Gaussian
Process form, defined over a word space from the CURRICULUM.
Unique to each game task is the geometry of this space, defined by
the respective covariance kernels. How should we leverage this
unified representation to transfer data from a source task to a
target task (and back)? Because the two tasks are broadly related
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(i.e., both early literacy skills, and individual mastery likely
correlated between them), we could consider simply adding all
observed source task data to the target task training set. However,
this approach ignores that some source task data points are more
informative to the target task than others. In other words, the
correlation of source task output with target task output varies
over the word space domain. Moreover, we can use the definitions
of the covariance kernels to compute a metric of task similarity at
each domain input point, which gives us a score of how similar
the local geometries are for each task. We can interpret this
instance-specific task similarity metric as a transfer coefficient.
“Instance-weighting” refers to a family of transfer learning
methods that training a target task model on source task data,
where the source-task data is re-weighted (a very simple form of
task-transformation) before incorporation into the target-task
training set (Pan and Yang, 2009). Thus we describe our transfer
learning approach as an instance-weighting method, where each
instance’s transfer coefficient is derived from a similarity metric
between each word’s use in one game and its use in
another (Eq. 4).

In prior work, we described the intuition behind this approach
as such:

“The covariance function of RHYMERACER encodes the
domain knowledge that words which share a rhyme
ending are “closer” to each other (i.e., if you can
correctly identify the rhyming word for DOG, you
are more likely to be able to identify the rhyming
word for FROG) (Lenel and Cantor, 1981). Likewise,
the covariance function of WORDBUILDER encodes the
domain knowledge that words which share similar
letters are “closer” to each other (i.e., if you can
correctly spell CAT, you are more likely to be able to
spell CAR). When computing the instance weight of
‘(DOG, 0.85)’, if knowing DOG impacts the inference of
other words in the source task in a way similar to how
knowing DOG impacts inference in the target task, then
DOG should be weighted roughly equally (i.e. close to 1)
in the target task. More concisely, the greater the
source-target similarity in word-space geometry
around a domain point, the higher the transfer
weighting of any source task data at that domain point.

To formalize this intuition, we take the average (over all
words in the curriculum) difference between source and
target task covariances of the instance word and each
other word, giving a measure of how similarly instance
word data impacts inference overall in the source and
target tasks. Transfer weight, λi, of a source task data
instance {xi, yi} is determined by the average difference in
source and target task covariance at that point, across all
words w in the CURRICULUM, W” (Spaulding et al., 2021)

λi � ∑w ∈ W1 − ∣∣∣∣
∣∣∣∣Covs(xi,w) − Covt(xi,w)

∣∣∣∣
∣∣∣∣

|W| (4)

A transfer coefficient of 1 indicates “perfect” transfer i.e., that
instance word conveys the same information in both source and

target tasks, whereas a transfer coefficient of 0 indicates that the
source and target task are uninformative to each other, with
respect to that instance word. To avoid undue complications in
evaluating this method, we reweight data instances only once in
our evaluations, from the originating source task to the target
task. If the model switches tasks multiple times, previously
transferred data is not re-weighted and re-transferred back to
the original source-task model.

By design, the range of possible training data scores lies within
(−1, 1), which, in addition to providing a natural interpretation of
scores as “mastery”, also simplifies the instance-weighting
transfer procedure. Because positive values are interpreted as
positive mastery and negative values as lack of mastery,
multiplying by the (positive) transfer coefficient λ can never
change the sign of a training instance i.e., a negative
demonstration in RhymeRacer remains a negative
demonstration in WordBuilder.

3.7 Improving Nonstationary GP Modeling
Via Continual Active Training Data
Management
In this paper, we propose to move frommultitask personalization
to “lifelong personalization” by extending transferrable
personalized models to nonstationary domains. We accomplish
this primarily via a novel extension to the Gaussian Process
modeling framework described thus far. In prior work (Spaulding
et al., 2018; Spaulding et al., 2021) we noted that GPs do not
naturally have a sense of temporal data-if the model receives
training points of (0,1) and (0,−1), the mean posterior prediction
is indeed (0,0). But, counter to the intuitive interpretation of
variance as uncertainty, the posterior distribution at 0 is not a
high variance Gaussian (indicating a newly uncertain prediction),
but rather a low-variance Gaussian (indicating certainty that the
“true” value lies in between the observed data points). Unlike
other uncertainty-based estimation methods (e.g., Kalman filters)
in which uncertainty is updated over time, Gaussian Processes
lack a mechanism for increasing uncertainty around previously
observed training data. Our solution, aimed at adapting GPs to
lifelong learning scenarios, is an active “learning” protocol we call
“continual active training data management”, or CATDaM.

In its simplest formulation, CATDaM is comprised of a data
structure that organizes the observed training data temporally,
and an active learning algorithm that marks “stale” data points
and removes them from the active training set. Much as the active
learning method used by the CONTENTMODEL (described in Section
3.3) is closely tied to the tutoring agent’s choice to observe student
response, the active removal of training data followed by
CATDaM is closely tied to the tutoring agent’s demonstrations.

Demonstrations by the tutoring agent represent the most
direct opportunity for the agent to influence student learning,
by providing the correct response to a prompt word (as a player)
and explaining out loud its reasoning to the student. As described
in Section 3.3, the agent’s decision to give a demonstration and
the CURRICULUM word demonstrated are, in fact, coordinated by
the STRATEGYMODEL, the CONTENTMODEL, and the STUDENTMODEL.
The decision to take the DEMONSTRATE strategy action comes
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first, and then the CONTENTMODEL selects the word which the
STUDENTMODEL is most confident the student has not mastered
(i.e., has a negative posterior prediction for mastery).

A demonstration represents important contextual information
for CATDaM! It signals that a student’s mastery with respect to
that domain point (i.e., their mastery of the demonstrated word)
may have shifted, and that prior observations of student
performance may no longer reflect their current mastery. In
order to address this potential distribution shift in student
mastery, CATDaM marks prior observations of student
response to that target word in the memory data structure and
removes them from the active training set. Not only does the
CATDaM protocol remove training data that may no longer
reflect the current “distribution”, but it also has the additional
advantage of directly increasing model uncertainty at the
demonstrated domain point, signaling to the CONTENTMODEL

that it is a good candidate for observing student performance
at a future opportunity.

In the following sections, we evaluate the effect of adding
CATDaM to a STUDENTMODEL through a series of simulation
experiments.

4 SIMULATED STUDENTS: PRE-STUDY
EVALUATION FOR LONG-TERM HRI
SYSTEMS
Although uncommon, it is by no means a new idea within HRI to
simulate human data to evaluate robot behavior, models or
algorithms under gentler (and more repeatable) conditions.
The benefits of this practice are most clearly articulated in a
paper that describes the “Oz of Wizard” paradigm, inverting the
better-known “Wizard of Oz” paradigm in which real humans
interact with a robot whose behavior is actually produced by a
human (Steinfeld et al., 2009). Under the Oz ofWizard paradigm,
real robot behavior is evaluated against humans whose behavior is
actually produced by a computer, i.e., simulations of human
behavior. “Oz of Wizard” experiments involving “simulated”
students are rarely publicized, despite the widespread use of
simulators in other areas of robotics (e.g., Sim2Real motion
planning or task learning). In part this is because real student
behavior is not easy to simulate. Real students act unpredictably,
capriciously, and in ways that even the students themselves
struggle to articulate.

In many fields of engineering where the “actual” live test of a
system is expensive, overly time-consuming, or carries substantial
risk, simulation studies are considered de rigeur. Despite a
simulation fidelity gap larger than many physical environment
simulations, we believe simulated student evaluations can
advance research in long-term human-robot interactions by
providing a more principled starting point for systems prior to
conducting long-term in-person studies. For instance, studies on
simulated student data can confirm that modeling algorithms
perform as expected on simplified data distributions, simulated
student data can also help algorithm designers tune
hyperparameters to useful values or establish reasonable
performance baselines without having to conduct pilot tests on

live students. They can also allow for many different comparisons
to be made in parallel, whereas human-subjects studies are more
typically tightly controlled owing to the generally small number
of participants, which has the unfortunate side effect of limiting
the number of hypotheses that can be evaluated. We believe that
the use of simulated student tests should not be considered a
substitute for an in-person evaluation, but rather an important
and insightful part of the system implementation and preparation
before a study of in-person long-term interaction is launched.

In a 2021 review published in the Proceedings of the National
Academy of Sciences, roboticists highlighted HRI as an area
where simulation has great potential, but also faces many
challenges.

Development of simulation tools that better represent the
psycho-social nature of HRI and enable a common operating
“picture” of possible solution sets for decision making may . . .
establish a baseline for more effective collaboration . . . Creating
(simulated human) avatars is as difficult as humans are diverse,
each person a unique and complex web of intertwined physical,
social, emotional, cognitive, and psychological threads . . .
Numerous questions remain unanswered in relation to
abstracting in mathematical models the psychological
underpinnings that trigger in humans states of anxiety, fear,
comfort, stress, etc. In this context, the ability to control and
display emotions in (simulated human) avatars represents a
prerequisite for endowing smart robots with a sense of
empathy in their interaction with humans (Choi et al., 2021)

4.1 Simulating Student Performance Data
In this section we describe how we derive simulated student
performance data, which we use to analyze the effects of multitask
personalization through cross-task model transfer and a “lifelong
personalization” extensions via CATDaM. We outline our
implementations of two classes of simulated “students”
(referred to as “simple” and “dynamic” SIMSTUDENTs), describe
the theoretical assumptions on which these simulations are based,
and discuss the implications of subsequent simulation
experiments. Sections 4.1.1–4.1.3 are reprinted from
(Spaulding et al., 2021). The implementation of the simple
SIMSTUDENT is unchanged from that prior work in the new
experiments and results reported here.

4.1.1 SIMSTUDENT: A Sketch of Student Behavior for HRI
Simulations
Each SIMSTUDENT has an internal “true mastery” (mw ∈ [−1, 1])
for each word in the CURRICULUM, per game. The SIMSTUDENt’s true
mastery of a word in a game can be interpreted as the student’s
likelihood of correctly applying the literacy skill to the word (e.g.,
identify “SNAIL” as the rhyme for “WHALE” or correctly spell
“SNAIL” with the letter blocks). The process for generating true
mastery values varies by game, and is used to simulate a student’s
gameplay actions during the game via a noisy sampling process.

Each SIMSTUDENt’s “performance data” for a word consists of a
binary “correctness” variable corresponding to whether they
successfully applied the primary literacy skill of the game to
the word (e.g., selected the correct rhyme or correctly spelled the
Target word), plus a scalar “timing” variable corresponding to the
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amount of (simulated) time taken to answer. Each word-
performance pair (wordi, {correcti, timingi}) constitutes a single
“sample”.

4.1.2 Simulating True Mastery
Although each game supports the practice of different
fundamental literacy skills (rhyming and spelling), both skills
are indicators of a meta-linguistic skillset known as phonological
awareness. To generate the SIMSTUDENt’s true mastery of each
word in each game, we first generate a theoretical “phonological”
mastery for each of the 39 ARPAbet phonemes (Hixon et al.,
2011), uniformly at random (mp ∈ [−1, 1]). The phonological
mastery that underlies the word-mastery of both games is an
implicit modeling assumption, based on decades of research in
early childhood literacy development, that there exists a link
between a student’s rhyming and spelling ability with respect to
specific words and phonemes (Høien et al., 1995). After random
initialization, these phonological mastery values are then further
transformed to derive the mastery of each CURRICULUM word in
each game. For RHYMERACER, the mastery of the phonemes that
comprise each rhyme-ending (e.g., “AY”-“N” for “RAIN”,
“BRAIN”, and “TRAIN”) are averaged, and Gaussian noise
(centered on the phoneme-mastery mean, σ � 0.1) is
independently added to compute the SIMSTUDEnt’s true mastery
of each word with that rhyme-ending. For WORDBUILDER, the
phonological mastery of all phonemes that constitute a word
are averaged to give the SIMSTUDEnt’s true mastery of that word.

4.1.3 Simulating Performance Data From Mastery
The “correctness” component of student performance is
determined by whether the student’s true mastery of that word
is greater or less than 0 (corresponding to correct/incorrect).
However, the value of this component is randomly flipped at a
rate equal to “guess” and “slip” binomial variables. “Guess” and
“slip” parameters are common formulations in educational
student modeling research (Baker et al., 2008), which we use
here to make our simulated student data more realistic.
Respectively, guess and slip parameters correspond to the
probability of correctly answering a question without true
mastery or incorrectly answering a question despite true
mastery. For RHYMERACER, we set guess and slip rates at 0.25
and 0.1, based on the multiple-choice nature of the round
gameplay. For WORDBUILDER, due to a game design less
conducive to successful guessing, the guess and slip rates are
set at 0.1 and 0.1.

The “timing” component of student performance is
determined by the numerical value of the SIMSTUDEnt’s true
mastery, mixed with Gaussian noise. For these experiments,
we capped the maximum timing at 10 s. The student’s true
mastery score is binned into deciles, and the final score is
calculated by sampling from a Gaussian centered on
10 −MasteryDecile, so that lower levels of mastery correspond
to longer timing components.

4.2 Dynamic Students
The dynamic SIMSTUDENT largely keeps the same
implementation as the simple SIMSTUDENT, and extends it by

adding a learning rate and a learning gain parameter. Whenever
the tutoring agent gives a demonstration, the learning rate
parameter determines the probability that the student’s
mastery increases, simulating student learning. The
magnitude of the score rise in the student’s underlying word
mastery is set by the learning gain parameter (word mastery is
capped at 1, and further student learning from tutor
demonstrations has no effect). In the experiments reported
here, the learning rate was set to 0.66 and the learning gain
was set to 0.50 (so if mastery were at its lowest possible value,
two successful lessons would be sufficient to boost mastery to
halfway, and four successful lessons would boost mastery to its
highest value). Other than the probabilistic shift in word
mastery in response to tutor demonstrations, the dynamic
SIMSTUDEnt’s word mastery and performance data are
simulated identically to the simple SIMSTUDENT.

5 EVALUATING LIFELONG GAUSSIAN
PROCESSES AND MULTITASK TRANSFER
IN SIMULATION
Our primary research goal with this paper is to extend prior
results on multi-task personalization to a more realistic
simulation scenario that emphasizes the non-stationary nature
of a student learner during a tutoring interaction. Therefore, we
will quickly recap prior results onmultitask personalization in the
stationary case (simple SIMSTUDENT), then explore how
introducing robot demonstrations, student learning updates,
and the addition of continuous active training data
management (CATDaM) affects our evaluation of multi-task
personalization.

The primary questions we were interested in answering with
this work were fundamental measures of transfer learning
systems: viability, proficiency, and efficiency. In other words, 1)
Viability: does incorporating source task data improve target task
performance at all, or do we find that source task data is worse
than no data i.e., negative transfer? 2) Proficiency: Does a target
task model trained on source and target task data perform better
than a target task model trained on the same amount of total data,
exclusively from the target task? 3) Efficiency: Does a target task
model trained on source and target task data perform better than
a target task model trained on the same amount of target task data
only?

Our primary metric for evaluating models is the F-1
classification score, which combines precision and recall. The
classification task is whether the model correctly predicts the sign
(i.e., positive or negative) of the SIMSTUDEnt’s true word mastery.
While this may seem a coarse metric for simulated study—we
could, for instance, look at L1 or L2 regression loss—the sign of
the word mastery is the primary determinant of the correctness of
the student’s response (guesses and slips notwithstanding). In a
study with real students, we do not have access to a numerical
form of a student’s “true” mastery; student models are evaluated
based on their ability to predict student’s actual response
behaviors. Therefore, in the spirit of keeping our simulation as
close as possible to human subject study, we focus our evaluation
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on the same metric: binary classification of student mastery with
respect to individual curricular components.

Each figure below shows the results of the average of
20 “rollouts” of 60 “samples” for each of three classes of
model: RHYMERACER single task, WORDBUILDER single task, and a
transfer model (color shading indicates standard error of the
mean). At the start of each rollout, a new SIMSTUDENT (with newly
randomized word mastery) is created to represent a unique
student. Each rollout consisted of 60 samples, intended to
mirror the structure of many common studies of long-term
interactions—four interaction “sessions” each of which
provided 15 useful samples [roughly in line with the actual
number of samples collected in live human-robot experiments
reported in Spaulding and Breazeal (2019). Within each rollout,
the transfer model alternates tasks at the start of each “session”
i.e., after 15, 30, and 45 samples respectively. Within each rollout,
“samples” represent opportunities for the tutoring agent to
OBSERVE students mastery via game performance.

In live gameplay, the STRATEGYMODEL determines whether the
tutoring agent DEMONSTRATEs or OBSERVEs. For our
simulation study, we adopt a simple rule-based
STRATEGYMODEL: the robot chooses to DEMONSTRATE after a
fixed number of samples and OBSERVE otherwise. In the case of
a typical 60 sample rollout, the tutoring agent DEMONSTRATES
twice after every three samples it OBSERVEs, starting after the
first nine samples. So in a 60 sample rollout, the student receives
34 “demonstrations” from the robot (not all of which result in
successful learning), 2 each after 9, 12, 15 . . . samples.

Figure 5 shows the structure of the training data for each class
of model graphically.

In live gameplay, the STRATEGYMODEL determines whether the
tutoring agent DEMONSTRATEs or OBSERVEs. For our
simulation study, we adopt a simple rule-based
STRATEGYMODEL: the robot chooses to DEMONSTRATE after a
fixed number of samples and OBSERVE otherwise. In the case of
a typical 60 sample rollout, the tutoring agent DEMONSTRATES

twice after every three samples it OBSERVEs, starting after the
first nine samples. So in a 60 sample rollout, the student receives
34 “demonstrations” from the robot (not all of which result in
successful learning), two each after 9, 12, 15 . . . samples.

5.1 Multitask Personalization With
Stationary Students
In prior work, we showed that multitask personalization can
improve the efficiency of target task model learning, and that this
effect is most pronounced within the first few samples collected
during an interaction. This is a critical step towards reducing the
problem of cold-start learning in interactive machine learning.
The results in this section were previously reported in Spaulding
et al. (2021). Here, we give further context for these results and
provide new supporting evidence to support their conclusions,
showing that the effect persists even when the task order is
reversed. Figure 6 shows the results of the rollouts when
RHYMERACER is the starting task, and Figure 7 show the
corresponding results when WORDBUILDER is the starting task.

First, we discuss the single-task models. Both single-task
models learn good representations of their respective game
tasks over 60 samples, consistent with prior experimental
results (Spaulding and Breazeal, 2019), suggesting that our
simulation settings are reasonably implemented, giving
confidence in further results not yet evaluated in an
experimental setting with human students.

The transfer model data is depicted in two separate
representations, each of which is better suited to answering
different questions. The “continuous” representation (left, both
figures) shows the transfer model data as a single rollout of 60
samples, with each session segment colored to show transfer. This
representation is best suited for exploring questions of final
proficiency—how well do transfer models trained on a mix of
source and target task data compare to single-task models trained
on the same amount of data exclusively from the target task? The

FIGURE 5 | Visual depiction of training data for single- and multi-task student models. Blue and Yellow rectangles and circles indicate models and data instances
from RHYMERACER and WORDBUILDER. Red rings indicate data has been re-weighted from its originating source task to a new target task.
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“discontinuous” representation (right, both figures) shows the
transfer model data split into discrete session segments, with
their position on the x-axis determined by the amount of target
task data. This representation is best suited for exploring questions
of model efficiency—how well do transfer models trained on a mix
of source and target task data compare to single-task models trained
on the same amount of data exclusively from the target task?

Figure 6 shows that initial transfer from RHYMERACER to
WORDBUILDER is substantial and positive, and that a WORDBUILDER

model trained on prior data from RHYMERACER outperforms a single-
task WORDBUILDERmodel, particularly during crucial early interaction
rounds. Figure 7 shows that the effect remains consistent when the
task order is reversed (i.e., when the task sequence starts with
WORDBUILDER). In this case, we can see that transfer from
WORDBUILDER to RHYMERACER boosts initial performance, but that
subsequent transfer effects are less impactful as more target task data
is gathered, suggesting that the benefits of task transfer may not be
perfectly reflexive (i.e., the benefit of transferring RHYMERACER data to
WORDBUILDER may not be equal to the benefit of transferring data
from WORDBUILDER to RHYMERACER).

Overall, these results from the simplified simulation
environment paint a compelling enough picture to merit further
investigation of multitask personalization in the nonstationary
setting. Positive transfer is evident in both directions, and there
is strong evidence that multi-task personalization is most impactful

in crucial early phases of an interaction, before a model has an
opportunity to acquire significant target-task training data.

5.2 Lifelong Personalization With Dynamic
Students: Effects on Model Proficiency and
Data Efficiency
Now we turn our attention to evaluating qualities of multitask
personalization in a more complex, nonstationary simulation
scenario that incorporates the effects of a tutoring agent’s
actions on dynamic (i.e., learning) students. In these
evaluations, results for all models were derived over the same
simulation timeline of 60 samples, even though in studies with
real students, there is often a trade-off between opportunities for
the tutoring agent to respond (“demonstrations”) and the student
to respond (“samples”). Because we are primarily interested in
understanding data and performance trade-offs between different
kinds of computational models, we chose to evaluate them over
consistent data sample timelines. Even though the models
evaluated with a dynamic student incorporate demonstrations
and student learning and models evaluated on static students do
not, we evaluate them both with respect to the same 60 sample
timeline. We also provide new results from adding “continuous
active training data management” (CATDaM) to the GP
STUDENTMODEL for “lifelong” learning, and present evidence

FIGURE 6 |Simple “Proficiency” and “Efficiency” evaluation of multi-task vs. single-task personalizedmodels when RhymeRacer is the first task. The transfer model
trades off final classifier accuracy for multi-task generality and meets or exceeds single-task model performance with equal amounts of target task data.

FIGURE 7 | Simple “Proficiency” and “Efficiency” evaluation of multi-task vs. single-task personalized models when WordBuilder is the first task. The general trend
is consistent with the results when RhymeRacer is first, indicating that the results are stable independent of task order.
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that including CATDaM can improve both model performance
and student learning in nonstationary scenarios.

First, we show what happens when we apply the original, static
Gaussian Process model (without CATDaM) directly to a
nonstationary simulation with agent demonstrations and
dynamic students.

Figure 8 compares static single-task and transfer models
evaluated in two different scenarios. On the left, we have the
same experimental conditions as Figures 6, 7, in which underlying
student performance is derived from a static SIMSTUDENT and there
are no demonstrations to promote student learning. On the right,
the modeling GPs take the same modeling approach, but the
underling student performance data is derived from dynamic
SIMSTUDENTs. Demonstrations from the tutoring agent slowly
cause shifts in underlying student mastery. This shows the
expected performance gap from modeling a dynamic target
using non-stationary modeling approach. Even under these
more challenging conditions, the GP modeling framework can
still learn a passable student model, but on the right, we see the
relative impact of “stale” data and student mastery shift impede
performance. Across all classes, final model proficiency stabilizes at
an F1-score of (0.74–0.79), compared to (0.84–0.87) when
modeling static students, a drop of 10 percentage points. The
final proficiency of the multitask model also declines across both
tasks, though the performance loss is less than in the single-task

case. Despite this hit to overall proficiency, the most notable trends
of the multitask transfer model, positive transfer and early-sample
efficiency gains, remain.

Next, we examine the benefits of incorporating continual
active training data management (CATDaM) into Gaussian
Process student models.Figure 9 compares static single-task
and transfer models (on the left) to lifelong (i.e., uses
CATDaM) single-task and transfer models on the right. For
both classes of model, underlying student performance is derived
from a dynamic SIMSTUDENT that receives demonstrations.

On the left, we see the same general performance trend as the
right side of Figure 8. The static GP model learns a decently
performant model of the dynamic student, but student learning
causes both single-task and multitask models to quickly hit a
lower performance ceiling than in the static-student-static-GP
case. Without accounting for shift in dynamic student mastery,
the learning curve for static-GP models flattens and even declines
slightly. On the right, it continues to rise throughout the full 60
sample rollout, hitting basically the same level of performance as
the “static-student-static-GP” case from Figure 8.

To summarize these results: when we increase the complex
and realism of the simulation environment by adding in a non-
stationary SIMSTUDENT and tutor demonstrations, stationary GP
models perform about 8–10 percentage points worse (10–15%).
Augmenting the GP model with CATDaM helps the Gaussian

FIGURE 8 | Static-model-static-student performance results (A) vs. static-model-dynamic-student performance results (B). Static models can learn a decent
model but suffer a drop in final proficiency. Efficiency benefits of multitask model are undiminished.
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Process better model the non-stationary effects of tutor
demonstrations, and performance performs as well in a more
complex, nonstationary environment as a stationary model does
in a stationary environment.

And, while non-stationarity lowers the final proficiency of
static GP models, it does not appear to materially impact the
efficiency results from multitask transfer. Nor are efficiency
results clearly impacted when GP model proficiency rises as a
result of incorporating CATDaM. This result that the efficiency
benefits of a multitask personalization approach are independent
of the proficiency benefits of a continual learning approach.

Lifelong GP Modeling of Dynamic Students:
Effects on Student Learning
In addition to enabling more sophisticated evaluation of
proficiency and efficiency of personalized model learning, by
integrating tutoring agent actions and dynamic student learning
into our simulation experiments, we can also study the effect of
CATDaM on student learning, the increase in mastery due to the
tutoring agent demonstrations. We quantify these results by
calculating the number of “newly mastered” words (mastery
went from negative to positive) for each model type over
rollouts guided by both static and dynamic GPs. Figure 10

shows that SIMSTUDENTs in the dynamic GP case learned five
more words on average, compared to students in the static GP
rollouts. We hypothesize this result is due to the dynamic GP
picking “better” words to demonstrate, on account of a more up-
to-date estimate of word uncertainty enabled by CATDaM.

CONCLUSION AND FURTHER
DISCUSSION

Throughout these experiments, we have strived to carefully
contextualize the results as supporting evidence in support of
future in-person studies with human students. There is truly no
substitute for actual human experimental data. At the same time,
we think that these results provide confidence to proceed with live
student studies, and are demonstrative of the kinds of benefits for
long-term HRI that can come from simulation analysis. When
previously introducing this evaluation framework, we wrote:

“In advocating for researchers to evaluate their systems
in the real world, Rodney Brooks famously quipped
“simulations are doomed to succeed” (Brooks and
Mataric, 1993). We find this philosophy generally
laudable, if not always practical. Simulated human

FIGURE 9 | Static-model-dynamic-student performance results (A) vs. dynamic-model-dynamic-student performance results (B). Adding CATDaM to GP
models improves modeling performance in nonstationary environments, while preserving efficiency benefits of multitask personalization.
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data has an accepted role in Human-Robot and
Human-Agent Interaction research (with notable
examples in human-interactive machine learning
systems) (Griffith et al., 2013). While this project
meets the criteria for such a design, we wish to state
that this project constitutes an evaluation of the
proposed transfer method, it is not a definitive
evaluation. Further research with human subjects will
be necessary, not least, because one of the major
hypothesized benefits of the multi-task
personalization paradigm—increased student
engagement—could not be realistically evaluated by
simulation experiments.”

In summary, themain contribution of this paper is extending our
prior study of multitask personalization to encompass more realistic
aspects of human-robot tutoring interactions, chiefly that student
learning is a nonstationary target for cognitive modeling when the
robot tutor is actively teaching. To investigate this more complex
scenario, we introduced a method for our Gaussian Process transfer
learning approach to better handle nonstationary targets, adding a
continual active training data management (CATDaM) mechanism
to each task model. This memory-based active data management
allows each model to proactively prune away “stale” data from its
training set based on interactive context features (in this case, based
on which words the agent provided demonstrations for).

Not only does extending our evaluation of multitask learning
to more realistic non-stationary domains lend further confidence
that simulation results will extend to live long-term studies with
students, but the addition of robot actions (demonstrations/
observations) and stochastic student learning updates also
allows us to analyze estimated student learning gains in
simulation. We found that in simulated interaction with a
tutoring agent using a CATDaM-enabled model leads to a

simulated learning gain of almost 50% more new words
mastered, compared to an agent using a static STUDENTMODEL.
These results are consistent over both single-task and multi-task
models, and are robust to task order in the multitask case.

We also find evidence that the extension of our modeling
approach to nonstationary domains does not alter the positive
transfer benefits of data efficiency and cold-start avoidance
previously observed in evaluating multitask personalization. In
other words, adopting a continual learning approach appears to
be complementary to a multitask personalization approach.
Finally, we show that adopting a continual learning approach
to dynamic student modeling also has benefits for student
learning in addition to model learning.

Overall, these results paint a bright picture for future
research in long-term HRI. Combining multitask
personalization and continual learning into a “lifelong
personalization” approach appears to benefit both the data
efficiency of model learning, the final proficiency of learned
student models, and the amount of student learning gain. The
simulation experiments presented here provide useful insight as
technical validation in advance of a long-term in-person study,
and may also prove useful in persuading institutions to engage
in long-term HRI research as a scientific partner. Naturally,
more research will be needed to confirm these effects in studies
with real students. But these results bring us one step closer,
providing compelling evidence that combining continual
learning and multitask personalization can be a successful
path toward truly lifelong personalized companions.
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